Survival Analysis Module I: A Bird's Eye View

Dr. Mark Williamson DaCCoTA University of North Dakota

What is Survival Analysis?

- Fundamentally time-to-event data [1,2]
 - Cohort is measured over time for event
 - Event may be death/disease/failure/bankruptcy/etc.
 - Important in fields such as epidemiology, engineering, economics, etc.

Introduction

- Survival analysis is used in three typical ways:
 - Survival time of a group
 - Survival time across groups
 - Survival time based on factors
- Typical approaches are visualization through survival curves and modeling using methods such as the log-rank test or Cox regression
- Important terms include event, time, censoring, survival function, and hazard function [1]
- Basic rules of survival [3]
 - "No one starts out dead"
 -> S(t)=1 @ t=0
 - "Everyone dies eventually" -> $S(t)=0 @ t=\infty$
 - "Once you are dead, you stay dead" -> S(t) never increases

Structure and Uses 4

Log-rank statistic for two groups =
$$\frac{(O_2 - E_2)^2}{Var(O_2 - E_2)} \sim \chi_1^2$$
[9]

regression

Other covariate models

Structure and Uses 6

Structure and Uses 6

Risk Factor	Parameter Estimate	P-Value	Hazard Ratio (HR) [12 (95% Cl for HR)
Age, years	0.11691	0.0001	1.124 (1.111-1.138)
Male Sex	0.40359	0.0002	1.497 (1.215-1.845)
Systolic Blood Pressure	0.01645	0.0001	1.017 (1.012-1.021)
Current Smoker	0.76798	0.0001	2.155 (1.758-2.643)
Total Serum Cholesterol	-0.00209	0.0963	0.998 (0.995-2.643)
Diabetes	-0.02366	0.1585	0.816 (0.615-1.083)

There are four ways to introduce covariates in parametric survival models

- Parametric families, where the parameters of a distribution, such as λ and p in a Weibull, depend on covariates
- Accelerated life, where the log of survival time follows a linear model
- Proportional hazards, where the log of the hazard function follows a linear model
- Proportional odds, where the logit of the survival function follows a linear model [13]

Effects of factors on survival time **Survival** trees **Survival** random forests Сох proportional hazards regression Other covariate models

Shaking for 60 seconds. Falling off means counted as Dead (1).

Time	Dead	Ν		
0		12		
13	1	12		
16	1	11		
18	1	10		
26	3	9		
27	1	6		
30	1	5		
31	1	4		
38	1	3		
41	1	2		
50	1	1		
60	0	0		

	А	В	с	D	F	G
1	type	id	time	status	Time	Dead
2	Blue Anklo	1	26	1	0	
3	Red Anklo	2	26	1	13	
4	Green Anklo	3	31	1	16	
5	Green Tricer	4	18	1	18	
6	Black Iguan	5	38	1	26	
7	Grey Hadr	6	13	1	27	
8	Green Sauro	7	30	1	30	
9	Orang Pter	8	26	1	31	
10	Orange Carno	9	50	1	38	
11	Blue Red Carno	10	27	1	41	
12	Grey Carno	11	16	1	50	
13	Light Blue Carno	12	41	1		

F	G	Н	1	J
Time	Dead	N	1-d/n	S(t)
0		12		1
13	1	12	0.916667	0.916667
16	1	11	0.909091	0.833333
18	1	10	0.9	0.75
26	3	9	0.666667	0.5
27	1	6	0.833333	0.416667
30	1	5	0.8	0.333333
31	1	4	0.75	0.25
38	1	3	0.666667	0.166667
41	1	2	0.5	0.083333
50	1	1	0	0

#Load and View Data library("survival") setwd("C:/Users/Mark.williamson.2/Desktop/Williamson Data/R/R_data") Dino <-read.csv("Dino_Survival.csv")</pre> print(Dino) R #Survival Curve dinofit <-survfit(Surv(time, status==1)~1,</pre> summary(dinofit) plot(dinofit, xlim=c(0,60))

> dinofit2 <-survreg(Surv(time, status==1)~1,</pre> data=Dino, dist='exponential') summarv(dinofit2) #3.350 T < -seq(0, 60, 0.1)plot(dinofit, xlim=c(0,60)) points(T, 1-pexp(T, exp(-3.350)), cex=0.3, pch=16, col="red") #Smooth Survival Curve Attempt 3 dinofit3 <-survreg(Surv(time, status==1)~1,</pre> data=Dino, dist='weibull', scale=0)

data=Dino)

summary(dinofit3) #3.464; 0.331

#Smooth Survival Curve Attempt 1

plot(dinofit, xlim=c(0,60)) points(T, 1-pweibull(T,1/0.331, exp(3.464)), cex=0.3, pch=16, col="purple")

R

print(Dino)

summary(dinofit)

T < -seq(0, 60, 0.1)

#Load and View Data

<		SAS	5		* PROC	Load and For IMPORT dataf bms=csv out= dino; set di f id >7 then lse do; diet PRINT data=d	<pre>mat Data; file='/home/markwilliamson20/my_courses/markwilliamson0/MW_Datasets_2021/Presentation and Module Datasets 2021/Dino_Survival.cs adino replace; getnames=yes; guessingrows=10000; no; do; diet="Carnivore"; end; =="Herbivore"; end; dino; *Survival Function; PROC LIFETEST data=dino plots=survival(atrisk cb); time time*status(0); </pre>	V*
Obs	type	•	id	time	status	diet	*Survival Function (two groups); ods output ProductLimitEstimates=dino_ple;	
1	Orang_Pt	ter	8	26	1	Carnivore	PROC LIFETEST data=dino plots=survival(atrisk cb); PROC PRINT data=dino_ple; strata diet: PROC SGPLOT data=dino_ple;	
2	Orange_0	Carno	9	50	1	Carnivore	time time*status(0); series x=time v=CumHaz:	
3	Blue_Rec	d_Carno	10	27	1	Carnivore		
4	Grey_Car	rno	11	16	1	Carnivore	Product-Limit Survival Estimate Product-Limit Survival Estimates With Number of Subjects at Risk With Number of Subjects at Risk and 95% Hall-Wellner Bands	
5	Light_Blu	ie_Carno	12	41	1	Carnivore	1.0	
6	Blue_Ank	do	1	26	1	Herbivore		
7	Red_Ank	lo	2	26	1	Herbivore	0.8 -	
8	Green_Ar	nklo	3	31	1	Herbivore		
9	Green_Tr	ricer	4	18	1	Herbivore		
10	Black_lgu	lan	5	38	1	Herbivore		
11	Grey_Had	dr	6	13	1	Herbivore		
12	Green_Sa	auro	7	30	1	Herbivore		
		Test of Eq	uality	over St	rata		0.2	
Test		Chi-Squar	e	DF	Pr > Chi	-Square		
Log-Ra	ink	1.242	0	1		0.2651	ALKISK 12 12 9 5 2 1 Herbivore 7 7 5 3 0 0 10 20 30 40 50 0 10 20 30 40 50	
Wilcox	on	0.522	6	1		0.4697	time time	
-2Log(l	LR)	0.127	0	1		0.7216	95% Hall-Wellner Band diet — Carnivore — Herbivore	

Test Log-Rank Wilcoxon -2Log(LR)

*Load and For PROC IMPORT dataf dbms=csv out= DATA dino; set di if id >7 then else do; diet PROC PRINT data=d					PROC d DATA i e PROC	Load and For IMPORT dataf bms=csv out= dino; set di f id >7 then lse do; diet PRINT data=d	mat Data ile='/hc dino rep no; do; die ="Herbiv ino;	a; ome/mark olace; g et="Carn vore"; e	<pre>williamson20/my_courses/markwilliamson0/MW_Datasets_2 etnames=yes; guessingrows=10000; ivore"; end; nd;</pre>	2021/F PR	<pre>Presentation and Module Datasets 2021/Dino_Survival.csv' *Hazard Function; COC LIFETEST data=dino plots=hazard; time time*status(0);</pre>
Obs	tupe		id	timo	etatue	diet	* PROC t	Surviva LIFETES ime tir Surviva	<pre>Al Function; AT data=dino plots=survival(atrisk cb); me*status(0); Al Function (two groups);</pre>	PR	<pre>*Culmulative Hazard Function; COC LIFETEST data=dino nelson method=pl; time time*status(0); ods output ProductLimitEstimates=dino ple;</pre>
1	Orang Pt	ter	8	26	1	Carnivore	PROC	LIFETES	T data=dino plots=survival(atrisk cb);	PR	OC PRINT data=dino_ple;
2	Orange C	Carno	9	50	1	Carnivore	s +	trata d	liet;	PR	COC SGPLOT data =dino_ple;
3	Blue Red	d Carno	10	27	1	Carnivore	L L	Tille (Ti	e'status(),		series X=time y=cumHaz;
4	 Grey_Car	rno	11	16	1	Carnivore			Epanechnikov Kernel-Smoothed Hazard Function		3 -
5	Light_Blue	e_Carno	12	41	1	Carnivore					
6	Blue_Ank	lo	1	26	1	Herbivore		0.04			
7	Red_Ankl	lo	2	26	1	Herbivore					
8	Green_Ar	nklo	3	31	1	Herbivore		e 003		ate	2-
9	Green_Tr	ricer	4	18	1	Herbivore		ard R		Estim	
10	Black_lgu	Jan	5	38	1	Herbivore		d Haz		valen F	
11	Grey_Had	dr	6	13	1	Herbivore		1 20.0 timete		-lool	
12	Green_Sa	auro	7	30	1	Herbivore		Est		Re	1-
Test of Equality over Strata								0.01			
est		Chi-Square	C)F	Pr > Chi	-Square					
og-Ra	nk	1.2420		1		0.2651		0.00			
/ilcoxo	on	0.5226	;	1		0.4697			u 10 20 30 40 50 time		0 10 20 30 40 50
2Log(L	.R)	0.1270		1		0.7216		Bandwidth	=50.17609		time

https://und.qualtrics.com/jfe/form/SV_3Q4QXbdVLMGTva6

An Illustration

Summary and Conclusion

- Survival analysis is used for time-to-event data
- Major types are 1) survival time of group, 2) survival time across groups, and 3) survival time based on factors
- Survival curves and life tables are common visualization methods
- Log-rank tests and Cox regressions are common analysis methods
- Tune in next time for a more detailed look in Survival Analysis Module II: Leaves and Trees

- [1] <u>https://en.wikipedia.org/wiki/Survival_analysis</u>
- [2] <u>http://www.stat.columbia.edu/~madigan/W2025/notes/survival.pdf</u>
- [3] <u>https://www.real-statistics.com/survival-analysis/survival-analysis-basic-concepts/</u>
- [4] <u>https://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html</u>
- [5] <u>https://www.real-statistics.com/survival-analysis/kaplan-meier-procedure/kaplan-meier-overview/</u>
- [6] https://www.real-statistics.com/survival-analysis/kaplan-meier-procedure/survival-curve/
- [7] https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_survival/BS704_Survival5.html
- [8] <u>https://www.researchgate.net/publication/340989649_Establishment_of_an_integrated_model_for_predicting_survival_and_guiding</u> <u>treatment_in_local_recurrence_nasopharyngeal_carcinoma/figures?lo=1</u>
- [9] <u>https://www.slideshare.net/zhe1/kaplan-meier-survival-curves-and-the-logrank-test</u>
- [10] <u>https://www.researchgate.net/publication/274396208_Glutathione_S-</u> <u>transferase_O2_gene_rs157077_polymorphism_predicts_response_to_transarterial_chemoembolization_in_hepatocellular_carcinom</u> <u>a/figures?lo=1</u>
- [11] <u>https://pubmed.ncbi.nlm.nih.gov/26858773/#&gid=article-figures&pid=figure-1-uid-0</u>
- [12] <u>https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Survival/BS704_Survival6.html</u>
- [13] https://data.princeton.edu/pop509/pop509slides1.pdf

Acknowledgements

• The DaCCoTA is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729.

Daccoté

ON TRANSLATIONAL ACTIVITY

 For the labs that use the Biostatistics, Epidemiology, and Research Design Core in any way, including this Module, please acknowledge us for publications. "Research reported in this publication was supported by DaCCoTA (the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729)".

Daccota Dakota cancer collaborative ON TRANSLATIONAL ACTIVITY