

Python in 10 minutes

Part 5

Dr. Mark Williamson

Purpose:

- Quick, bite-size guides to basic usage and tasks in Python
- I'm no expert, I've just used it for various tasks, and it has made my life easier and allowed me to do things I couldn't manually
- I'd like to share that working knowledge with you

Lesson 5: Extracting data

Last time, we learned how to split a large dataset into equal sized chunks and into a subset based on a specific criteria. Today, we'll look at additional ways to pull out specific data. We'll extract 1) a single variable into a list, 2) a pair of variables into a dictionary, and 3) whole lines into a new file.

Lesson 5: The Dataset in Question

County level Brain Cancer Incidence Rates from the NIH state cancer profiles

- All Races, Males, 50+, All Stages, Latest 5year average
- Age-Adjusted Incidence Rate, cases per 100,000
- Asterisk indicates data that is not available (suppressed due to low counts)
- Cleaned up from raw csv file

• Available at:

https://med.und.edu/daccota/files/docs/berdc_docs /county_level_brain_cancer_incidence.csv

First twenty entries

County	State	FIPS	Incidence	LCI	UCI
Autauga County	Alabama	1001	*	*	*
Baldwin County	Alabama	1003	19.1	13.3	26.6
Barbour County	Alabama	1005	*	*	*
Bibb County	Alabama	1007	*	*	*
Blount County	Alabama	1009	*	*	*
Bullock County	Alabama	1011	*	*	*
Butler County	Alabama	1013	*	*	*
Calhoun County	Alabama	1015	*	*	*
Chambers County	Alabama	1017	*	*	*
Cherokee County	Alabama	1019	*	*	*
Chilton County	Alabama	1021	*	*	*
Choctaw County	Alabama	1023	*	*	*
Clarke County	Alabama	1025	*	*	*
Clay County	Alabama	1027	*	*	*
Cleburne County	Alabama	1029	*	*	*
Coffee County	Alabama	1031	*	*	*
Colbert County	Alabama	1033	33.7	19.1	55.1
Conecuh County	Alabama	1035	*	*	*
Coosa County	Alabama	1037	*	*	*
Covington County	Alabama	1039	*	*	*

Lesson 5: Variable to a List

Goal: Pull out brain cancer incidence rates into a list

Procedure

- Download the dataset
- Open Python and start a new file
- Create a **<u>path</u>** and <u>**file**</u> variable
- Create an empty list called <u>incidence list</u> (set it equal to empty square brackets)
- Create a for-loop for each line
- Create an if-else statement that checks if "Incidence" is in the line and passes if true (skips the first line, which is the column headers)
- Else create an <u>incidence</u> variable by splitting the 4th variable of the line by a comma
- Create an if statement that checks if incidence is NOT an asterisk (*) and then appends <u>incidence</u> to the <u>incidence list</u> if that is the case

Lesson 5: Variables to a Dictionary

<u>Goal</u>: Create a dictionary that links county FIPS codes to brain cancer incidence

Procedure

- Create an empty dictionary called <u>FIPS_dict</u> (set it equal to empty curly brackets)
- Create a for-loop for each line
- Create an if-else statement that checks if "Incidence" is in the line and passes if true
- Else create a <u>FIPS</u> and <u>incidence</u> variable by splitting the 3rd and 4th variables of the line by a comma
- Create an if-statement that checks if incidence is NOT an asterisk (*) and then sets <u>FIPS</u> as the *key* and <u>incidence</u> as the *value* in the <u>FIPS_dict</u>

Dictionary[key] = pair

see if your county is in the dictionary by typing FIPS_dict[FIPS] using your county's FIPS number

Lesson 5: Variables to a Dictionary 2

Goal: Create a dictionary that links state name with a list of all county brain cancer incidences (missing or not)

Procedure

- Create an empty dictionary called <u>state_dict</u> (set it equal to empty curly brackets)
- Create a for-loop for each line
- Create an if-else statement that checks if "Incidence" is in the line and passes if true
- Else create a <u>state</u> and <u>incidence</u> variable by splitting the 2nd and 4th variables of the line by a comma
- Create an if-else statement to check if the state is NOT in the <u>state_dict</u>
 - If true (state not in dictionary), add <u>state</u> to dictionary as the *key* with the *value* being a list with one entry, the <u>incidence</u>
 - If false, append the list stored in that state's dictionary entry with the next **incidence** value

Print out the incidence list for your state

Lesson 5: Lines to a New File

Goal: Create a new file for a single state with only nonmissing incidence data

Procedure

- Create a variable called <u>outfile</u> that open to a new file to your path
 - Use a state of your choice and include the initials in the file name
 - This example uses Montana (MT)
- Create a for-loop for each line
- Create an if-else statement that checks if "Incidence" is in the line and writes that line to <u>outfile</u> if true
- Else split the line by comma to the six variables of <u>county</u>, <u>state</u>, <u>FIPS</u>, <u>incidence</u>, <u>LCI</u>, and <u>UCI</u>
- Inside the first if-else statement, create an if-statement that checks to see if the state is the state you've chosen, and the incidence is NOT missing (*) and writes the line to the file if both are true

Close outfile

Lesson 5: Lines to a New File 2

<u>Goal</u>: Create a new file for a single state with only non-missing incidence data and modified data

Procedure

- Create another outfile (<u>outfile2</u>) and write the first line (contains "Incidence") to it
- For all other lines, split the line by comma
- Create an if-statement to check for state and non-missing data
- Create a <u>county2</u> variable that strips the unneeded ' County' from <u>county</u>

- Create an <u>incidence2</u> variable that changes divides <u>incidence</u> by 10 to get incidence per million (original incidence is per 100,000, so dividing by ten turns it into per 1,000,000)
- Divide LCI and UCI (confidence intervals) by ten as well
- Create a <u>line2</u> variable and put all the updated variables together in a string separated by commas and then write line2 to the <u>outfile2</u>

Lesson 5: Summary

- Python can quickly extract data from files
- Data can be modified and stored in a variety of useful ways, such as lists, dictionaries, and new files
- Data can be converted from number/strings to strings/numbers or edited to removed things like whitespace characters