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Introduction

• Last time, we covered a broad 
overview of multivariate analysis

• Today we’ll cover more details about 
specific multivariate methods
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Descriptions

Name Description

MANOVA Multivariate analysis of variance.  Used to test the statistical significance of the 
effect of one or more independent variables (categorical) on a set of two or more 
dependent variables

MANCOVA Multivariate analysis of covariance.  Same as MANOVA but after controlling for 
covariate(s).

Multivariate 
Regression

Used to test the statistical significance of the effect of one or more independent 
variables (numerical) on a set of two or more dependent variables

K-means clustering Clustering method that partitions observations into k number of clusters, where 
each observation belongs to the cluster with the nearest mean.  Also known as 
centroid-based clustering

Hierarchical 
clustering

Clustering method that separates observations based on a measure of similarity 
using a tree-based approach either from the bottom-up (agglomerative) or top-
down (divisive)

Density-based 
clustering

Clustering method that connects areas where observations are high density and 
allows for arbitrary-shaped clusters.

Distribution-based 
clustering

Clustering method that assumes observations come from a certain distribution 
(such as Gaussian) and groups them with decreasing probability from the 
distribution’s center.

Classification tree Recursive partitioning decision tree in which target variables are categorical

Regression tree Recursive partitioning decision tree in which target variables are numerical.
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Rationales
When and Why should you use 
multivariate analysis in general?
• Complex for a complex world
• Don’t use if you don’t understand it 
• Don’t use if a simpler method works

What are the assumptions of 
multivariate analysis?

When should you use specific 
multivariate analysis methods?

Name Usage Assumptions

1-Way MANOVA Multiple numerical Y-variables (Responses), Single 
categorical X-variable (Factor)

• Independence of observations

• Multivariate normality

• Linearity (Y-vars)

• No multicollinearity (X-vars)

• Equality of variance

• Equality of variance-covariance matrices

2-Way MANOVA Multiple numerical Y-variables (Responses), Two 
categorical X-variables (Factors)

1-WAY MANCOVA Multiple numerical Y-variables (Responses), Single 
categorical X-variable of interest (Factor), Single numerical 
X-variable controlled for (Covariate)

2-WAY MANCOVA Multiple numerical Y-variables (Responses), Two 
categorical X-variable of interest (Factors), Single numerical 
X-variable controlled for (Covariate)

Multivariate 
Regression

Multiple numerical Y-variables (Responses), numerical X-
variables (Predictors)

• Same as MANOVA/MANCOVA except 

variance

K-means clustering [Categorical Y-variable], Numerical X-variables, set number 
of clusters

• N/A

Hierarchical 
clustering

[Categorical Y-variable], Numerical X-variables, non-
specified cluster number

Distribution-based 
clustering

[Categorical Y-variable], Numerical X-variables, known 
distribution

Density-based 
clustering

[Categorical Y-variable], Numerical X-variables, dataset 
with noise and/or outliers

Classification tree Categorical Y-variable (Outcome), Numerical or Categorical 
X-variables • N/A

Regression tree Continuous Y-variable (Outcome), Numerical or Categorical 
X-variables



Step-by-step Example 1

MANOVA, MANCOVA, and multivariate regression using the 
mtcars dataset

A. Is there a significant effect of transmission category 
(automatic/manual) and gear category (3/4/5) on MPG and quarter-
mile time?

B. Is there a significant effect of transmission category 
(automatic/manual) and gear category (3/4/5) on MPG and quarter-
mile time, while accounting for weight?

C. Is there a significant effect of displacement, gross horsepower, and 
rear axle ratio on MPG and quarter-mile time? 



Step-by-step Example 1

#Intro stuff:

library(rstatix)

library(plyr)

library(tidyverse)

head(mtcars) 

#outcomes (mpg and qsec); categorical 
predictors (am, gear); covariate (wt)

mtcars$am2 <-as.factor(mtcars$am)

mtcars$gear2 <-as.factor(mtcars$gear)

#data visualization

par(mfrow=c(2,2))

plot(mtcars$mpg~mtcars$am2, col='orange')

plot(mtcars$mpg~mtcars$gear2, col='orange')

plot(mtcars$qsec~mtcars$am2, col='blue')

plot(mtcars$qsec~mtcars$gear2, col='blue')

plot(mtcars$mpg~mtcars$wt, col=mtcars$am2, pch=16)

plot(mtcars$mpg~mtcars$wt, col=mtcars$gear2, pch=16)

plot(mtcars$qsec~mtcars$wt, col=mtcars$am2, pch=17)

plot(mtcars$qsec~mtcars$wt, col=mtcars$gear2, pch=17)

par(mfrow=c(1,1))

Set-Up MANOVA/MANCOVA data exploration

https://www.datanovia.com/en/lessons/one-way-manova-in-r/



Step-by-step Example 1



Step-by-step Example 1

Testing MANOVA/MANCOVA 
assumptions

#normality
hist(mtcars$mpg)
hist(mtcars$qsec) #good enough

mtcars %>%
select(mpg, qsec) %>%
mshapiro_test() #good

#multicollinearity
cor.test(mtcars$mpg, mtcars$qsec) #good

#linearity
plot(mtcars$mpg, mtcars$qsec) #good

statistic p.value
<dbl>   <dbl>

1     0.967   0.420

Pearson's product-moment correlation

data:  mtcars$mpg and mtcars$qsec
t = 2.5252, df = 30, p-value = 0.01708
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.08195487 0.66961864

sample estimates:
cor

0.418684



Step-by-step Example 1

Testing MANOVA/MANCOVA 
assumptions cont.

#homogeneity of variance and covariance
ldply(mtcars[,9:10],function(x) t(rbind(names(table(x)), table(x), 
paste0(prop.table(table(x))*100, "%"))))

box_m(mtcars[, c("mpg", "qsec")], mtcars$am2) #good
box_m(mtcars[, c("mpg", "qsec")], mtcars$gear2) #significant (Pillai’s)

mtcars %>% 
gather(key = "variable", value = "value", mpg, qsec) %>%
group_by(variable) %>%
levene_test(value ~ am2) #good for mpg, not good for qsec

mtcars %>% 
gather(key = "variable", value = "value", mpg, qsec) %>%
group_by(variable) %>%
levene_test(value ~ gear2) #not good for mpg, not good for qsec

statistic p.value parameter method                                             
<dbl>   <dbl>     <dbl> <chr>                                              

1      4.11   0.250  3 Box's M-test for Homogeneity of Covariance Matrices

statistic p.value parameter method                                             
<dbl>   <dbl>     <dbl> <chr>                                              

1      14.0  0.0298 6 Box's M-test for Homogeneity of Covariance Matrices

variable   df1   df2 statistic      p
<chr>    <int> <int>     <dbl>  <dbl>

1 mpg          1    30     4.19  0.0496
2 qsec 1    30     0.322 0.575

variable   df1   df2 statistic     p
<chr>    <int> <int>     <dbl> <dbl>

1 mpg          2    29    1.49   0.242
2 qsec 2    29    0.0491 0.952



Step-by-step Example 1

MANOVA results

manova1 <- manova(cbind(mpg, qsec)~ am2 + gear2, data=mtcars)
summary(manova1)
summary.aov(manova1)

Df  Pillai approx F num Df den Df    Pr(>F)    
am2        1 0.64944  25.0093      2     27 7.151e-07 ***
gear2      2 0.44423   3.9976      4     56  0.006369 ** 
Residuals 28                                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response mpg :
Df Sum Sq Mean Sq F value    Pr(>F)    

am2          1 405.15  405.15 19.9021 0.0001208 ***
gear2        2 150.89   75.45  3.7062 0.0373294 *  
Residuals   28 570.00   20.36                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response qsec :
Df Sum Sq Mean Sq F value    Pr(>F)    

am2          1  5.230  5.2301  2.7877 0.1061372    
gear2        2 41.225 20.6125 10.9865 0.0003006 ***
Residuals   28 52.533  1.8762                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Step-by-step Example 1

MANCOVA results

mancova1 <-manova(cbind(mpg, qsec)~ am2 + gear2 + wt, 
data=mtcars)
summary(mancova1)
summary.aov(mancova1)

Df  Pillai approx F num Df den Df    Pr(>F)    
am2        1 0.76412   42.113      2     26 6.997e-09 ***
gear2      2 0.51596    4.694      4     54  0.002526 ** 
wt 1 0.59288   18.931      2     26 8.442e-06 ***
Residuals 27                                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response mpg :
Df Sum Sq Mean Sq F value    Pr(>F)    

am2          1 405.15  405.15 45.9872 2.778e-07 ***
gear2        2 150.89   75.45  8.5637  0.001318 ** 
wt 1 332.13  332.13 37.6990 1.464e-06 ***
Residuals   27 237.87    8.81                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response qsec :
Df Sum Sq Mean Sq F value    Pr(>F)    

am2          1  5.230  5.2301  3.1824 0.0856791 .  
gear2        2 41.225 20.6125 12.5422 0.0001406 ***
wt 1  8.160  8.1598  4.9650 0.0343877 *  
Residuals   27 44.373  1.6435                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Step-by-step Example 1

Multivariate Regression data exploration

Multivariate Regression assumptions

#mpg
mtcars_mpg <- data.frame(mpg=mtcars$mpg, 
disp=mtcars$disp, hp=mtcars$hp, wt=mtcars$wt)
pairs(mtcars_mpg, col=“blue”)

#qsec
mtcars_qsec <- data.frame(qsec=mtcars$qsec, 
disp=mtcars$disp, hp=mtcars$hp, wt=mtcars$wt)
pairs(mtcars_qsec, col=“red”)

#normality and linearity
#good,based on previously done with MANOVA/MANCOVA

#multicollinearity the X-variables
cor(mtcars[,4:6])

hp       drat         wt
hp    1.0000000 -0.4487591  0.6587479
drat -0.4487591  1.0000000 -0.7124406
wt 0.6587479 -0.7124406  1.0000000



Step-by-step Example 1

Multivariate Regression results
mvreg1 <-lm(cbind(mpg,qsec) ~ disp + hp + wt, data=mtcars)
summary(mvreg1)

Response mpg :

Call:
lm(formula = mpg ~ disp + hp + wt, data = mtcars)

Residuals:
Min     1Q Median     3Q    Max 

-3.891 -1.640 -0.172  1.061  5.861 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 37.105505   2.110815  17.579  < 2e-16 ***
disp -0.000937   0.010350  -0.091  0.92851    
hp          -0.031157   0.011436  -2.724  0.01097 *
wt -3.800891   1.066191  -3.565  0.00133 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.639 on 28 degrees of freedom
Multiple R-squared:  0.8268, Adjusted R-squared:  0.8083 
F-statistic: 44.57 on 3 and 28 DF,  p-value: 8.65e-11

Response qsec :

Call:
lm(formula = qsec ~ disp + hp + wt, data = mtcars)

Residuals:
Min      1Q  Median      3Q     Max 

-1.8121 -0.3125 -0.0245  0.3544  3.3693 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 17.965050   0.849663  21.144  < 2e-16 ***
disp -0.006622   0.004166  -1.590  0.12317    
hp          -0.022953   0.004603  -4.986 2.88e-05 ***
wt 1.485283   0.429172   3.461  0.00175 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.062 on 28 degrees of freedom
Multiple R-squared:  0.6808, Adjusted R-squared:  0.6466 
F-statistic: 19.91 on 3 and 28 DF,  p-value: 4.134e-07



Assessment 1

https://und.qualtrics.com/jfe/form/SV_d7ozvbwOekrBahU

https://und.qualtrics.com/jfe/form/SV_d7ozvbwOekrBahU


Step-by-step Example 2

Clustering and recursive partitioning using the mtcars dataset
A. Can cars be clustering into groups by using the car characteristic 

variables?

B. Can car MPG or engine type (V-shaped or straight) be predicted using 
car characteristic variables?



Step-by-step Example 2

Setup

#Intro stuff:
library(cluster)
library(factoextra)
library(dbscan)
library(mclust)

head(mtcars)
mtcars2 <- mtcars[,1:7]
head(mtcars2)

https://data-flair.training/blogs/clustering-in-r-tutorial/



Step-by-step Example 2

K-means clustering
kmeans1 <- kmeans(mtcars2, centers=2, nstart=100)
str(kmeans1)
fviz_cluster(kmeans1, data=mtcars2)

kmeans2 <- kmeans(mtcars2, centers=3, nstart=100)
fviz_cluster(kmeans2, data=mtcars2)

List of 9
$ cluster     : Named int [1:32] 2 2 2 2 1 2 1 2 2 2 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

$ centers     : num [1:2, 1:7] 15.1 23.97 8 4.78 353.1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "1" "2"
.. ..$ : chr [1:7] "mpg" "cyl" "disp" "hp" ...

$ totss : num 623274
$ withinss : num [1:2] 93604 58870
$ tot.withinss: num 152473
$ betweenss : num 470801
$ size        : int [1:2] 14 18
$ iter : int 1
$ ifault : int 0
- attr(*, "class")= chr "kmeans"



Step-by-step Example 2

Hierarchical clustering
dist_mat <- dist(mtcars2, method="euclidean")
hclust1 <-hclust(dist_mat, method='average')
plot(hclust1)

plot(hclust1)
rect.hclust(hclust1, k=2, border=2:6)
abline(h=200, col="red")

plot(hclust1)
rect.hclust(hclust1, k=3, border=2:6)
abline(h=160, col="red")



Step-by-step Example 2

Density-based clustering
kNNdistplot(mtcars2, k=2)
abline(h=60, col="red")

dbclust1 <-dbscan(mtcars2, 60, 2)
hullplot(mtcars2, dbclust1$cluster)

kNNdistplot(mtcars2, k=3)
abline(h=43, col="red")

dbclust2 <-dbscan(mtcars2, 43, 3)
hullplot(mtcars2, dbclust2$cluster)

https://en.proft.me/2017/02/3/density-
based-clustering-r/



Step-by-step Example 2

Distribution-based clustering
mclust1 <-Mclust(mtcars2)
mclust1$modelName
mclust1$G
plot(mclust1, what=c('classification'))
plot(mclust1, "density")

mtcars3 <-mtcars2[,1:3]

mclust2 <-Mclust(mtcars3)
mclust2$modelName
mclust2$G
plot(mclust2, what=c('classification'))
plot(mclust2, "density")

mclust3 <-Mclust(mtcars3, 2)
mclust3$modelName
mclust3$G
plot(mclust3, what=c('classification'))
plot(mclust3, "density")

[1] "VEV"
[1] 6

https://en.proft
.me/2017/02/1
/model-based-
clustering-r/



Step-by-step Example 2

Distribution-based clustering
mclust1 <-Mclust(mtcars2)
mclust1$modelName
mclust1$G
plot(mclust1, what=c('classification'))
plot(mclust1, "density")

mtcars3 <-mtcars2[,1:3]

mclust2 <-Mclust(mtcars3)
mclust2$modelName
mclust2$G
plot(mclust2, what=c('classification'))
plot(mclust2, "density")

mclust3 <-Mclust(mtcars3, 2)
mclust3$modelName
mclust3$G
plot(mclust3, what=c('classification'))
plot(mclust3, "density")

[1] "VEV"
[1] 4

https://en.proft
.me/2017/02/1
/model-based-
clustering-r/



Step-by-step Example 2

Distribution-based clustering
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https://en.proft
.me/2017/02/1
/model-based-
clustering-r/



Step-by-step Example 2

Regression Trees
library(rpart)
library(rpart.plot)
head(mtcars)

tree1 <-rpart(mpg ~ disp + hp + drat + wt + qsec, data=mtcars, 
control=rpart.control(cp=0.0001))

printcp(tree1)
prp(tree1)

best <-tree1$cptable[which.min(tree1$cptable[,"xerror"]),"CP"]
pruned_tree1 <-prune(tree1, cp=best)
prp(pruned_tree1, faclen=0, extra=1, roundint=F, digits=4)

#predict
tree2 <-rpart(mpg~disp+wt,data=mtcars, control=rpart.control(cp=0.0001))
prp(tree2)
new_car <- data.frame(wt=3, disp=300)
predict(tree2, newdata=new_car)

Regression tree:
rpart(formula = mpg ~ disp + hp + drat + wt + qsec, data = mtcars, 

control = rpart.control(cp = 1e-04))

Variables actually used in tree construction:
[1] disp wt

Root node error: 1126/32 = 35.189

n= 32 
CP nsplit rel error  xerror xstd

1 0.63566      0   1.00000 1.09142 0.25931
2 0.17491      1   0.36434 0.74268 0.17098
3 0.00010      2   0.18943 0.59461 0.12028

15.1 

https://www.statology.org
/classification-and-
regression-trees-in-r/



Step-by-step Example 2

Classification Trees
mtcars$vs2 <-as.factor(mtcars$vs)
mtcars$am2 <-as.factor(mtcars$am)
mtcars$gear2 <-as.factor(mtcars$gear)
mtcars$carb2 <-as.factor(mtcars$carb)
str(mtcars)

tree3 <-rpart(vs2 ~ mpg + cyl + disp + hp + drat +wt +qsec +am2 
+gear2 +carb2, data=mtcars, control=rpart.control(cp=0.0001))

printcp(tree3)
prp(tree3,faclen=0, extra=1, roundint=F, digits=4)

#less predictive
tree4 <-rpart(vs2 ~ drat +am2 +carb2, data=mtcars, 
control=rpart.control(cp=0.0001))

printcp(tree4)
prp(tree4,faclen=0, extra=1, roundint=F, digits=4)

Classification tree:
rpart(formula = vs2 ~ mpg + cyl + disp + hp + drat + wt + qsec + 

am2 + gear2 + carb2, data = mtcars, control = rpart.control(cp = 1e-04))

Variables actually used in tree construction:
[1] qsec

Root node error: 14/32 = 0.4375

n= 32 

CP nsplit rel error   xerror xstd
1 0.92857      0  1.000000 1.000000 0.200446
2 0.00010      1  0.071429 0.071429 0.070304



Step-by-step Example 2

Classification Trees
mtcars$vs2 <-as.factor(mtcars$vs)
mtcars$am2 <-as.factor(mtcars$am)
mtcars$gear2 <-as.factor(mtcars$gear)
mtcars$carb2 <-as.factor(mtcars$carb)
str(mtcars)

tree3 <-rpart(vs2 ~ mpg + cyl + disp + hp + drat +wt +qsec +am2 
+gear2 +carb2, data=mtcars, control=rpart.control(cp=0.0001))

printcp(tree3)
prp(tree3,faclen=0, extra=1, roundint=F, digits=4)

#less predictive
tree4 <-rpart(vs2 ~ drat +am2 +carb2, data=mtcars, 
control=rpart.control(cp=0.0001))

printcp(tree4)
prp(tree4,faclen=0, extra=1, roundint=F, digits=4)

Classification tree:
rpart(formula = vs2 ~ drat + am2 + carb2, data = mtcars, control = rpart.control(cp = 1e-
04))

Variables actually used in tree construction:
[1] carb2 drat 

Root node error: 14/32 = 0.4375

n= 32 

CP nsplit rel error  xerror xstd
1 0.50000      0   1.00000 1.00000 0.20045
2 0.14286      1   0.50000 0.92857 0.19845
3 0.00010      2   0.35714 0.92857 0.19845



Assessment 2

https://und.qualtrics.com/jfe/form/SV_6ustS4Q8hjLwLqK

https://und.qualtrics.com/jfe/form/SV_6ustS4Q8hjLwLqK


Caveats and Concerns

MANOVA and MANCOVA
A. When to use versus ANOVA and ANCOVA

B. Assumptions, assumptions

C. Time getting involved

D. Interpretation

E. Post-hoc tests

Clustering and Trees
A. When to use certain types

B. Clarity and usefulness



Real World Examples

MANOVA

Since the six different molar ratios (C:N, C:P, C:K, N:P, N:K, P:K) were not independent of each other, a multivariate analysis of variance (MANOVA) was 
performed with the following factors: block, sown species richness, functional group richness, legume presence, grass presence. 

Abbas, M., Ebeling, A., Oelmann, Y., Ptacnik, R., Roscher, C., Weigelt, A., et al. (2013). Biodiversity Effects on Plant 
Stoichiometry. PloS One, 8(3), e58179, doi:10.1371/journal.pone.0058179.



Real World Examples

MANOVA

To investigate significant effects of single and dual infection on the responses, we used Multivariate Analysis of Variance (MANOVA; [22], [23]) with 
tests based on Pillai's trace. Since the responses have a marked co-variation structure, these provide enhanced power relative to univariate tests 
assessing differences in infection group means separately for each response [24].

Roy, S., Lavine, J., Chiaromonte, F., Terwee, J., VandeWoude, S., Bjornstad, O., et al. (2009). Multivariate Statistical Analyses 
Demonstrate Unique Host Immune Responses to Single and Dual Lentiviral Infection. PloS One, 4(10), e7359, 
doi:10.1371/journal.pone.0007359.



Real World Examples

MANCOVA
Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., et al. (2012). Brain Training Game Improves 
Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial. PloS One, 7(1), e29676, 
doi:10.1371/journal.pone.0029676.

We conducted multivariate analyses of covariance (MANCOVA) for the change scores (post-training score minus pre-training score) in each of cognitive tests 
(Figure 2, Table 3). The change scores were the dependent variable, groups (Brain Age, Tetris) was the independent variable. Pre-training scores in all 
cognitive tests, sex, age, and education levels (years) were the covariate to exclude the possibility that any pre-existing difference of measure between groups 
affected the result of each measure and adjust for background characteristics.



Real World Examples

MANCOVA

(C) Bar diagram of the reliable biomarker signals of set 

A. Stars (*) over the bars point to significant p-values 

(MANCOVA, p < α*, where α* is Bonferroni corrected α = 

0.05) and therewith to significant biomarkers.

Denk, J., Boelmans, K., Siegismund, C., Lassner, D., Arlt, S., & Jahn, H. (2015). MicroRNA Profiling of CSF Reveals Potential 
Biomarkers to Detect Alzheimer`s Disease. PloS One, 10(5), e0126423, doi:10.1371/journal.pone.0126423.

After identifying the reliable biomarker candidates of set A and the most informative variables of 
set B, inferential statistics followed by applying multivariate analyses of covariance (MANCOVA) 
with sex and age as covariates. Those miRNAs among the biomarker candidates, which revealed 
significant differences between the AD and control group after Bonferroni adjustments on the 
confirmatory level, were designated as significant biomarkers.



Real World Examples

K-means clustering

For cluster analysis, the logarithm of the expression 
ratio for each gene divided by its mean value across all 
conditions was computed. This data was then 
clustered into 8–10 mutually exclusive groups using K-
means clustering [50]. The genes within each cluster 
were then hierarchically clustered and displayed in the 
figures.

Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y. V., Pellegrini, M., Goodrich, J., et al. (2007). Whole-Genome 
Analysis of Histone H3 Lysine 27 Trimethylation in Arabidopsis. PLoS Biology, 5(5), e129, 
doi:10.1371/journal.pbio.0050129.



Real World Examples

Hierarchical clustering Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A Principal Component Analysis of 39 
Scientific Impact Measures. PloS One, 4(6), e6022, doi:10.1371/journal.pone.0006022.

To cross-validate the PCA results, a hierarchical cluster 
analysis (single linkage, euclidean distances over  row vectors) 
and a k-means cluster analysis were applied to the measure 
correlations in  to identify clusters of measures that produce 
similar journal rankings.



Real World Examples

Density-based clustering Wang X, Liu G, Li J, Nees JP (2017) Locating Structural Centers: A Density-Based Clustering 
Method for Community Detection. PLoS ONE 12(1): e0169355. 
https://doi.org/10.1371/journal.pone.0169355

In this work, we present a new method for community detection which is termed as LCCD. It is a density-based clustering method, inspired by recent research on data 
analysis [32]where data points are clustered by finding the cluster centers.

This observation is illustrated in Fig 1 by the Zachary’s 
karate club network [42]that is a real-world social network. 
This interactive network with 34 nodes, ultimately split into 
two distinct groups, because of a disagreement between the 
administrator (vertex 1) and the instructor (vertex 34), as 
shown in Fig 1(A).



Real World Examples

Distribution-based clustering

We explored the distribution-based clustering and weighted laterality index 

within BA4a and BA4p. The involvement of BA4p during MI (measured with 

distribution-based clustering) was significantly greater in the older group 

(p<0.05) than in the younger group.

Sharma N, Baron J-C (2014) Effects of Healthy Ageing on Activation Pattern within the 
Primary Motor Cortex during Movement and Motor Imagery: An fMRI Study. PLoS ONE 
9(6): e88443. https://doi.org/10.1371/journal.pone.0088443



Real World Examples

Classification Tree Mora, C., Myers, R. A., Coll, M., Libralato, S., Pitcher, T. J., Sumaila, R. U., et al. (2009). Management 
Effectiveness of the World's Marine Fisheries. PLoS Biology, 7(6), e1000131, doi:10.1371/journal.pbio.1000131.

Data on fisheries sustainability was quantified for the year 2004 and linked to the 
effectiveness of fisheries management using a classification/regression tree. A 
classification tree tests for significant differences in fisheries sustainability among 
the quarters of each attribute (note that the first and fourth quarters are the 
extremes of a scale from worst- to best-case scenarios for each attribute



Real World Examples

Regression Tree

Finally, to evaluate the relationships between compositional change and the suite 
of predictor variables identified in Table 2 further, we used regression tree analysis 
(RTA) with the Sørenson's distance between time periods as the response variable. 

Thompson, J. R., Carpenter, D. N., Cogbill, C. V., & Foster, D. R. (2013). Four Centuries of Change in 
Northeastern United States Forests. PloS One, 8(9), e72540, doi:10.1371/journal.pone.0072540.



Summary and Conclusion

• MANOVA and MANCOVA are extension of ANOVA and ANCOVA
• Both involve several assumptions that need to be tested
• The actual analysis is straightforward
• Results are usually in table form

• Clustering comes in a variety of methods
• Used to classify observations into responses based on information
• Often can be graphed

• Tune in next time for a plunge into advanced topics of Multivariate 
Analysis Module III: Deep Dive
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