Linear Regression Module III: Deep Dive

Dr. Mark Williamson DaCCoTA University of North Dakota

- Previously:
 - Covered a broad overview
 - Looked at more detail
 - Ran through examples
- This time: looked at more advanced linear regression methods
 - Generalized Linear Mixed Model
 - Longitudinal Analysis
 - Structural Equation Modeling

Reviewing the Basics 🛟

- Linear regression: modeling the relationship between a response variable and one or more predictor variables
 - Structure->simple, multiple, multivariate
 - Predictor variables->polynomial, fixed/random, nested
 - Response variables->Gaussian, Logistic, Poisson, etc.
 - Other considerations
- Process of ordinary least squares
- Need to consider assumptions and model fit
- Lots of ways to run a regression

- Generalized Linear Mixed Model
 - Software: SAS Studio
- Longitudinal Analysis
 - Software: R
- Structural Equation Modeling
 - Software: STATA

Generalized Linear Mixed Models

Descriptions

DaCCoTA

ON TRANSLATIONAL ACTIVITY

- A Generalized Linear Mixed Model is combination of a Generalized Linear Model and a Linear Mixed Model
 - Generalized -> accommodates non-normal distributions
 - Mixed -> allows for random effects
- Key differences in generalized linear mixed model and linear model:
 - Method of estimation: Ordinary Least Squares vs. Maximum Likelihood (iteratively maximize likelihood of parameters given data)
 - Distributions: Normal distribution vs. Others
 - Model scale: GLMMs link expected values to model scale with link
 - Random Intercepts/ Random Slopes:

Generalized Linear Mixed Models

Formats

Basic (Random Intercepts):

PROC GLIMMIX data=dataset; class TREATMENT RANDOM; model RESPONSE= TREATMENT; random intercept /subject=RANDOM;

PROC GLIMMIX data=dataset;

class RANDOM; model RESPONSE= TREATMENT; random intercept /subject=RANDOM;

PROC GLIMMIX data=dataset;

class RANDOM; model RESPONSE= TREATMENT; random RANDOM;

Nested:

PROC GLIMMIX data=dataset; class TEACHINGSTYLE STATE SCHOOL; model RESPONSE = TEACHINGSTYLE; random STATE SCHOOL(STATE);

Random Effects Only; PROC GLIMMIX data=dataset; class TREE BRANCH LEAF; model RESPONSE = ; random TREE BRANCH(TREE) LEAF(BRANCH TREE);

Random Slopes:

PROC GLIMMIX data=dataset; class RANDOM; model RESPONSE = TREATMENT; random intercept TREATMENT/subject=RANDOM;

Generalized Linear Mixed Models

	SAS [®] Studio		👂 🚖 🤑 SAS Programmer - 🌐 ? Sign Out
Fyamnles	✓ Server Files and Folders	Linear Regression Module 3 examples.sas	
-numpics	は→ 歯 出 平 目 55	CODE LOG RESULTS OUTPUT DATA	
-	▲ 🛱 odaws02-usw2		
	Tolder Shortcuts		
	Files (Home)	<pre>*EXAMPLE 1: Basic GLMM with Categorical Treatment;</pre>	
n a l.• . 1	my_courses	3 DATA multicenter;	
N/Iulticontor⊥	briandarby0	4 input center group\$ n SideEffect @@;	
Multicenter	▲ ■ biometrydatasets	5 datalines; 6 1 4 32 14 1 8 33 18 2 4 30 4 2 8 28 8	
	amphipods.csv	7 3 A 23 14 3 B 24 9 4 A 22 7 4 B 22 10	
	anhydrobiosis.csv	8 5 A 20 6 5 B 21 12 6 A 19 1 6 B 20 3	
	D antnests.csv	9 7 A 17 2 7 B 17 6 8 A 16 7 8 B 15 9	
NPK	Ashton.csv		
	D barlev142.csv		
	D beeduration.csv	13 15 A 7 1 15 B 8 0	
	D bots1.csv	14 ; T	
RC ²	Dicadicav		
nc	D calibration.csv	10 PROC PRINT data=multicenter;	
	Cobralily.csv	18 DATA multicenter; set multicenter;	
	Conticosterone.csv	<pre>19 Prop_SideEffect = SideEffect/n;</pre>	
	Crickets.csv	20 21 DBCC SCRIDT determulticanter:	
WINDS		21 PRC SePLOI data=multicenter; 22 vhox Pron SideFfect /arounsgroun;	
•••••55	EDA.csv	23	
	D fish csv	24 PROC SGPLOT data=multicenter;	
		<pre>25 vbox Prop_SideEffect/ group=center;</pre>	
		20 27 PROC GLTMMIX data=multicenter:	
		28 class group:	
	D honeydew csy	<pre>29 model SideEffect/n = group /solution;</pre>	
	D insular cav	30	
	D invasiventants csv	31 PRC GLIMMIX data=multicenter;	
	D iron csv	<pre>33 model SideEffect/n = group / solution;</pre>	
	Dischamia cav	34 random center;	
	E Kokanon erv	35	
		36 PROC GLIMMIX data=multicenter; *same as above;	
	 Tasks and Utilities 	38 model Sideffect/n = group / solution;	
	 Snippets 	<pre>39 random intercept / subject=center; *random intercept;</pre>	
	▶ Libraries	40 lsmeans group / ilink cl; 41 ods output LSMeans-lsm1:	
	 File Shortcuts 		

¹<u>https://support.sas.com/resources/papers/proceedings/proce</u> edings/sugi30/196-30.pdf

²<u>https://v8doc.sas.com/sashtml/stat/chap41/sect33.htm</u>

DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY Generalized Linear Mixed Models ::

Examples

Multicenter¹ NPK RC² Wings

SAS [®] Studio		👂 🎅 🤀 SAS Programmer -	🖨 🕐 Sign Out
Server Files and Folders	😰 Linear Regression Module 3 examples.sas ×		
12- 言志平田 65	CODE LOG RESULTS OUTPUT DATA		
⊿ 👰 odaws02-usw2	★ 0- 日 民 B B B ● (* ★ m) (****) ○ 後 抽 20 23		
Folder Shortcuts	1		1
🔺 🔽 Files (Home)	2 *EXAMPLE 1: Basic GLMM with Categorical Treatment;		
my_courses	3 DATA multicenter;		
🖌 🚞 briandarby0	5 datalines:		
biometrydatasets	6 1 A 32 14 1 B 33 18 2 A 30 4 2 B 28 8		
amphipods.csv	7 3 A 23 14 3 B 24 9 4 A 22 7 4 B 22 10		
🕞 anhydrobiosis.csv	8 5 A 20 6 5 B 21 12 6 A 19 1 6 B 20 3		
D antnests.csv	9 / 4 1/2 / 0 1/0 0 4 10 / 0 0 15 9 10 9 4 13 1 9 8 14 5 10 4 13 3 10 8 13 1		
Ashton.csv	11 11 A 11 1 11 B 12 2 12 A 10 1 12 B 9 0		
barley142.csv	12 13 A 9 2 13 B 9 6 14 A 8 1 14 B 8 1		
beeduration.csv	13 15 A 7 1 15 B 8 0		
D bots1.csv	15 I		
C cad.csv	16 PROC PRINT data=multicenter;		
C calibration.csv	17		
C cobralily.csv	18 DATA multicenter; set multicenter;		
G corticosterone.csv	<pre>PPop_sldetTect = SldetTect/n; 20</pre>		
C) crickets.csv	21 PROC SGPLOT data=multicenter;		
eggpore.csv	22 vbox Prop_SideEffect /group=group;		
D FDA.csv	23		
D fish.csv	24 PROC SQPLOT datamulticenter;		
🕞 galapagos.csv	26		
gastropod.csv	27 PROC GLIMMIX data=multicenter;		
D helmet.csv	28 class group;		
D honeydew.csv	<pre>29 model SideEffect/n = group /solution; 30</pre>		
D insulancev	31 PROC GLIMMIX data=multicenter:		
invasiveplants.csv	32 class center group;		
D iron.csv	33 model SideEffect/n = group / solution;		
ischemia.csv	34 random center;		
C Kokanee orv	36 PROC GLIMMIX data=multicenter: "same as above:		
Tasks and Utilities	37 class center group;		
	<pre>38 model SideEffect/n = group / solution;</pre>		
 Snippets 	39 random intercept / subject=center; *random intercept; 40 ismeas group (link c);		
 Libraries 	41 ods output LSNeans=Ism;		
 File Shortcuts 	/home/introvillamson20/my_courses/markwilliamson0/MW_2020, Work/Presentation and Module Examples/Linear Repression Module 3 examples.sas	Line 12, Column	15 UTF-

¹<u>https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/196-30.pdf</u>

²<u>https://v8doc.sas.com/sashtml/stat/chap41/sect33.htm</u>

DaCCoTL ON TRANSLATIONAL ACTIVITY

202.62

23.24

0.93

NORTH DAKOTA

Longitudinal Analysis

Descriptions

- Longitudinal data can be viewed as a special case of the multilevel data
- Time is nested within individual participants/observations
- Response variable and predictor variable(s) measured several times
- Point is to characterize change
- Parameters needed to link predictors to response and account for correlational structure of repeated measurements
- Simplest Case: Repeated Measures ANOVA
- Other: Linear mixed effects models, Generalized estimating equations

Formats

Repeated Measures ANOVA:

aov(Y~TREATMENT*TIME +
 Error(RANDOM),data=DATASET)

```
NESTEDDATASET <- groupedData(Y ~ TREATMENT |
RANDOM, data=DATASET)
```

gls(Y ~ TREATMENT*TIME, data=NESTEDDATASET,

- corr=corCompSymm(, form= ~ 1 | RANDOM))
- corr=corSymm(, form= ~ 1 | RANDOM), weights = varIdent(form = ~ 1 | TIME))
- corr=corAR1(, form= ~ 1 | RANDOM))
- corr=corAR1(, form= ~ 1 | RANDOM),
 weights=varIdent(form = ~ 1 | TIME))

Linear Mixed Effects:

```
#Random intercept
Imer(Y ~ TREAT + TIME + CAT + (1 | RANDOM), data = DATASET)
```

#Random intercept and slope
Imer(Y ~ TREAT + TIME + CAT + (TIME | RANDOM), data = DATASET)

Generalized Estimating Equations:

glm(Y~ TREATMENT, data=DATASET, family="DISTRUBITION"

Examples

Phlebitis (RM-ANOVA)¹ Beat the Blues (LME)² Respiratory (GEE)² Epilepsy (GEE)²

Longitudinal Analysis

¹<u>https://online.stat.psu.edu/stat510/lesson/10/10.1</u>

²A Handbook of Statistical Analyses Using R

 1. In R, which of the codes below correctly codes for a random intercept? a) (RANDOM) b) (1 RANDOM) c) (RANOM 1) c) (TIME RANDOM) 		2. What approach would be best to used for Poisson distributed data, a Linear Mixed Effects model or a Generalized Estimating Equation model? Why?	
3. Below are summary results correlation structures. Which the data? Why?	for two GEEs with different model is a more realistic fit to	4. To the right is a spaghetti plot of the percent of patients who took rescue medication by group. Does there appear to be differences across group and time (measurement)?)
Independent Coefficients: Estimate Naive S.E. Naive z Robust S.E. (Intercept) 3.5686314 1.4833349 2.405816 2.26947617 bdi.pre 0.5818494 0.0563904 10.318235 0.09156455 treatmentBtheB -3.2372285 1.1295569 -2.865928 1.77459534 length>6m 1.4577182 1.1380277 1.280916 1.42825866 drugYes -3.7412982 1.1766321 -3.179667 1.78271179 Robust z (Intercept) 1.5724472 bdi.pre 6.3545274 bdi.pre 6.3545274 1.8242066 length>6m 0.9832449 drugYes -2.0986557 -2.0986557 -2.0986557	Coefficients: Estimate Naive S.E. Naive z Robust S.E. (Intercept) 3.0231602 2.30390185 1.31219140 2.23204410 bdi.pre 0.6479276 0.08228567 7.87412417 0.08351405 treatmentBtheB -2.1692863 1.76642861 -1.22806339 1.73614385 length>6m -0.1112910 1.73091679 -0.06429596 1.55092705 drugYes -2.9995608 1.82569913 -1.64296559 1.73155411 Robust z (Intercept) (Intercept) 1.3544357 bdi.pre 7.7533066 treatmentBtheB -0.0717577 drugYes -1.7322940	Group	B C D

 1. In R, which of the codes below intercept? a) (RANDOM) b) c) (RANOM 1) c) 	ow correctly codes for a) (1 RANDOM)) (TIME RANDOM)	 2. What approach would be distributed data, a Linear New Generalized Estimating Equals A Generalized Estimating Equals a Poisson distribution are Series 	e best to used for Poisson Aixed Effects model or a Lation model? Why? Equation model because data with non-normally distributed.
 Below are summary results correlation structures. Which the data? Why? The one with the exchangeab very little difference between 	s for two GEEs with different model is a more realistic fit to le correlation matrix. There is the Naïve and Robust S.E.	 4. To the right is a spaghetti plot of the percent of patients who took rescue medication by group. Does there appear to be differences across group and time (measurement)? Yes, the groups start around the same %, but diverge across time. By 	
Independent Coefficients: Estimate Naive S.E. Naive z Robust S.E. (Intercept) 3.5686314 1.483349 2.405816 2.26947617 bdi.pre 0.5818494 0.0563904 10.318235 0.09156455 treatmentBtheB -3.237285 1.1295569 -2.865928 1.77459534 length>6 1.4577182 1.1300277 1.280916 1.4825866 drugYes -3.7412982 1.1766321 -3.179667 1.78271179 Robust z (Intercept) 1.5724472 bdi.pre 6.3545274 treatmentBtheB -2.80982557 -2.0986557 -2.0986557	Coefficients: Exchangeable Estimate Naive S.E. Naive z Robust S.E. (Intercept) 3.0231602 2.03390185 1.31219140 2.23204410 bdi.pre 0.6479276 0.08228567 7.87412417 0.08351405 treatmentBtheB -2.1622863 1.73642861 -1.22806339 1.73614385 length>6 version registry -0.112910 1.73091679 -0.06429596 1.55092705 drugYes -2.9995608 1.82569913 -1.64296559 1.73155411 Robust z (Intercept) 1.3544357 bdi.pre 7.7583066 treatmentBtheB -1.2494854 length>6 length>6 -0.717577 drugYes -1.7322940	the final measurement, group A is lower than the other three, which are roughly the same.	B 20- 0 - 1 2 3 4 5 Measurement

Structural Equation Modeling

Descriptions

- Multivariate statistical analysis-> factor analysis combined with multiple regression analysis
- Can be used to impute relationships between unobserved constructs (latent variables) from observable variables
- General approach
 - Model specification
 - Estimation of free parameters
 - Assessment of model and model fit
 - Model modification
 - Sample size and power
 - Interpretation and communication
- Boxes: observed variables
- Circles: unobserved (latent) variables
- Arrows: paths
 - pointing: first variable affects the second (First -> Second)
 - small number is the value of constrained path coefficient
 - no number, then coefficient estimated from the data
- Curved, double headed paths: covariance (not otherwise assumed, like exogenous variables)

An example structural equation model. Latent variables are drawn as circles. Manifest or measured variables are shown as squares. Residuals and variances are drawn as double headed arrows into an object. Note latent IQ variable fixed at I to provide scale to the model (Wikipedia)

Structural Equation Modeling

Formats

Command Line:

. sem (L1 -> m1 m2)

(L2 -> m3 m4)

(L3 <- L1 L2)

(L3 -> m5 m6 m7)

. sem (m1 <- L1) (m2 <- L1) (L2 -> m3) (L2 -> m4) (L3 -> m5) (L3 -> m6) (L3 -> m7) (L3 <- L1) (L3 <- L2) cov(e.m1*e.m2) cov (e.L1*e.L2)

Graphically:

Structural Equation Modeling

Examples

Wheaton¹

Fictional Data²

Affective/Cognitive Arousal²

		Stata/	<pre>IC 14.2 - \\Client\C\$\Users\Mark.Williamson.2\Desk</pre>	top\Williamson Data\STATA\sem_sm2.dta		- 0 ×
Edit Data Graphics Statisti	ics User Window Help					
8 🗉 🖻 • 💷 • 🛃 • 🖪	2 📑 🔲 🗢 😳					
/ т т т т т т	×				 Variables 	¥ # >
Iter commands here	. do "C:\Users\MARI	XWI~1.2\AppD	Data\Local\Temp\189\STD00000000.tmp"		🔧 Filter variab	les here
Command _rc					Name	Label
embuilder "\\Client\C\$\U	. use "\\Client\C\$"	(Users Mark.	Williamson.2\Desktop\Williamson Data\STATA	\sem_sm2.dta", clear	_group	
to "C:\Users\MARKWI~1.2	(Structural model)	vion measure	mente componente)		≡ _type	
em (Alien67 -> occstat67,	· · · · · · · · · · · · · · · · · ·				educ66	Education, 1966
вр	. ssd describe				occstat66	Occupational stat
em (Alien67 -> occstat67,					anomia66	Anomia, 1966
em (Alien67 -> anomia67,	Summary statistic	cs data from	a \\Client\C\$\Users\Mark.Williamson.2\Deskt	op\Williamson Data\STATA\sem_sm2.dta	pwless66	Powerlessness, 1966
to "C:\Users\MARKWI~1.2	obs:	932	Structural model with measurem.	•	socdist66	Latin American so
em (Alien67 -> anomia67,	vars:	13	25 May 2013 11:45		occstat67	Occupational stat
do "C:\Users\MARKWI~1.2			(_dta has notes)		anomia67	Anomia, 1967
	maniable name		maniphle label	_	pwless67	Powerlessness, 1967
	variable name		Variable label	_	socdist67	Latin American so
	educ66		Education, 1966	—	occstat71	Occupational stat
	occstat66		Occupational status, 1966		anomia71	Anomia, 1971
	anomia66		Anomia, 1966		pwless71	Powerlessness, 1971
	pwless66		Powerlessness, 1966		P	
	socdist66		Latin American social distance, 1966		Properties	4 >
	occstat67		Occupational status, 1967	2		
	anomia67		Anomia, 1967	·	Variables	
	pwless67		Powerlessness, 1967		Name	
	socdist67		Latin American social distance, 1967		Label	
	occstat71		Occupational status, 1971		Type	
	anomia/1		Anomia, 1971 Deverlegences, 1971		Value label	
	pwiess/1	pwiess/i socdist71	Latin American social distance, 1971		Noter	
	BOGUISCIA			_	Data	
					E Filename	sem sm2.dta
					Label	Structural model wi
	end of do-file				F Notes	an a constant of the date of the
					Variables	15
	. sem (Alien67 -> a	anomia67,)	(Alien67 -> pwless67,) (Alien67 -> Alien7	1,) (SES -> educ66,) (SES -> occstat66,) (SES -> Alien(✓ Observations	15
	1 1 1000 C A1C	ANTI 1 /A14	an71 & anomia71 & /Alian71 & Nolana71	1 1-tont/Alion67 CDC Alion71 1 non-analatont	Size	1.58K
					Memory	64M
	Command				Sorted by	_group_type
	1					
stufs.ad.und.edu\Students\mark.wi	villiamson.2					CAP NUM OVE

¹<u>https://www.stata.com/stata12/structural-equation-modeling/</u>

²<u>https://www.stata.com/manuals13/sem.pdf</u>

1. In the mock SEM diagram below, what type of variable does B represent? What about E?	2. Which of the following Stata commands would include the covariance between VarA and VarB?			
	a) cov(e.VarA) cov(e.VarB) b) cov(e.VarA*e.VarB) c) cov(e.VarA, e.VarB) c) cov(e.VarA e.VarB)			
3. Looking at the fit of a SEM model returned the values below. Is the model a good fit? Why or why not?	4. What is the proper line path for the SEM diagram to the right?			
LR test model vs. saturated: chi2(4) = 4.78, Prob > chi2 = 0.3111	a) $(x1 x2 <- X)$ b) $(x1 x2 -> X)$ c) $(X <- x1 x2)$ d) $(X <- x1 <- x2)$ x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x1 x2 x2 x2 x1 x2 x2 x2 x2 x2 x3 x2 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x2 x3 x3 x2 x3 x3 x3 x2 x3			

Caveats and Concerns

- More complex analyses come with more work and understanding
 - Multiple models, assumptions, and tests
- Data issues:
 - Restructuring
 - Reformatting
 - Missing data
- May need to try different software to get the job done

random block
 block*color
 block*shading;

Fig. 1 The field experimental design included eight whole plots grouped into four blocks, with one plot per block that was burned annually (red outline) or left unburned (black outline). A split-strip plot design was obtained by mowing (hatched plots) or not mowing (open plots) one-half of each whole plot (i.e. the whole plots were split by mowing treatment) and using nutrient enrichment [nitrogen (N), phosphorous (P), both (N + P), or neither (C)] as a strip treatment applied perpendicular across the mowing treatments of each block. For this study, we sampled the 16 subplots (circled) that were not mowed, and had either nitrogen enrichment alone or had no nutrient addition. Thus, the four treatment combinations sampled were burned with and without nitrogen addition, and unburned with and without nitrogen addition.

NORTH DAKOTA

100

Doll, R., & Hill, A. B. (2004). The mortality of doctors in relation to their smoking habits: a preliminary report. 1954. *BMJ (Clinical research ed.), 328*(7455), 1529-1533. doi:10.1136/bmj.328.7455.1529

Real World Examples (

Schwartz, G. G., & Klug, M. G. (2019). Thyroid Cancer Incidence Rates in North Dakota are Associated with Land and Water Use. *International Journal of Environmental Research and Public Health*, *16*(20). doi:10.3390/ijerph16203805

Schwartz, G. G., Klug, M. G., & Rundquist, B. C. (2019). An exploration of colorectal cancer incidence rates in North Dakota, USA, via structural equation modeling. *International Journal of Colorectal Disease*, *34*(9), 1571-1576. doi:10.1007/s00384-019-03352-9

Summary and Conclusion

- There are lots of advanced regression approaches
- Approach depends on data and questions asked
- Requires more work, understanding, and patience the more complex it is
- R, SAS, and STATA all have procedures for advanced approaches

Acknowledgements

- The DaCCoTA is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729.
- For the labs that use the Biostatistics, Epidemiology, and Research Design Core in any way, including this Module, please acknowledge us for publications. "Research reported in this publication was supported by DaCCoTA (the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729)".

Daccota Dakota cancer collaborative ON TRANSLATIONAL ACTIVITY