Linear Regression Module II: Leaves and Trees

Dr. Mark Williamson

DaCCoTA University of North Dakota DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

- Linear regression is a foundational statistical technique
- Takes on many forms
 - Broad Outline, Predictor Variable, Response Variable, Other Considerations
- Here, we'll look in more details at the underpinning
- Also, we'll go through several examples

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

When should you use linear regression?

- Want to predict a variable's value
- Want to model the relationship between Y variable and X variable(s)
- Both Y and X and typically numerical
- Expect there to be a linear relationship

X variable(s) \rightarrow Y variable \downarrow	Categorical	Numerical	Categorical + Numerical
Categorical	Chi-Square	Regression	Regression
Numerical	ANOVA*	Regression	Regression

Different types of regression

DACCOTA DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

What assumptions are there for basic linear regression?

- <u>Linearity</u> relationship between X and mean of Y is linear
- <u>Homoscedasticity</u> the variance of the residuals is the same for any value of X
- <u>Independence</u> observations do not depend on one another
- <u>Normality</u> for any fixed value of X,
 Y follows a Gaussian distribution

Daccotá DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

- Variables:
 - Y variable -> response, measured, dependent
 - X variable -> predictor, control, independent
- Fitted/Predicted values -> values of Y generated by plugging X into model
- Residuals -> fitted values minus the actual observed values of Y
- Ordinary least squares:
 - Minimizes the squared distance between each Y value and line
 - Creates line of best fit
- Variable types:
 - Numerical: discrete, continuous
 - Categorical: ordinal, nominal
 - Fixed and Random
- Distributions:
 - Normal/Gaussian
 - Log Normal
 - Binomial
 - Poisson
 - Negative Binomial
 - Beta
 - Etc.

Step-by-step Examples $1_{\delta \to \Box}^{\diamond \leftarrow \circ}$

Youth Risk Behaviors Survey

- A. Can we predict weight from height?
- B. Can we predict weight from height and age?
- C. Can we predict weight from height, age, gender, and race/ethnicity?

Step-by-step Examples $1_{\delta \to \Box}^{\diamond \leftarrow \circ}$

>YRBS<-read.csv('YRBS_Example.csv')
>head(YRBS)

>summary(YRBS\$Height_m)
>summary(YRBS\$Weight_kg)

DaCCoTL

ON TRANSLATIONAL ACTIVITY

>hist(YRBS\$Height_m, col='red')
>hist(YRBS\$Weight_kg, col='blue')

>In_Weight<-log(YRBS\$Weight_kg)
>In_Height<-log(YRBS\$Height_m)</pre>

>hist(In_Weight, col='red')
>hist(In_Height, col='blue')

Step-by-step Examples $1_{\delta \to \Box}^{\diamond \leftarrow \circ}$

#Weight = Height
>lm1 <-lm(ln_Weight~ln_Height)
>summary(lm1)
>par(mfrow=c(2,2))
>plot(lm1)
>par(mfrow=c(1,1))
>plot(ln_Weight~ln_Height)
>abline(3.24,1.84)

Call: Im(formula = In_Weight ~ In_Height)

Residuals:

Min 1Q Median 3Q Max -0.51216 -0.13726 -0.03131 0.10775 0.81904

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.23654 0.05703 56.76 <2e-16 *** In_Height 1.83699 0.11025 16.66 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1976 on 871 degrees of freedom (114 observations deleted due to missingness) Multiple R-squared: 0.2417, Adjusted R-squared: 0.2408 F-statistic: 277.6 on 1 and 871 DF, p-value: < 2.2e-16

DACCOTÁ DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

Step-by-step Examples $1_{\downarrow}^{\diamond\leftarrow\circ}$

#Weight = Height + Age

- > plot(In_Weight~YRBS\$Age)
- > plot(In_Height~YRBS\$Age)
- > lm2<lm(ln_Weight~ln_Height*YRBS\$Age)
- > summary(lm2)
- > par(mfrow=c(2,2))
- > plot(lm2)
- > par(mfrow=c(1,1))

Im(formula = In_Weight ~ In_Height * YRBS\$Age) Residuals: Min 1Q Median 3Q Max -0.50566 -0.13501 -0.03491 0.10430 0.83447

Coefficients:

Call:

Estimate Std. Error t value Pr(>|t|)(Intercept)3.220990.776504.1483.68e-05***In_Height1.272171.511090.8420.40YRBS\$Age0.001770.047740.0370.97In_Height:YRBS\$Age0.033310.092800.3590.72

DaCCoTA DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

Step-by-step Examples $1_{\delta \to \Box}^{\diamond \leftarrow \circ}$

#Weight = Height + Age + Gender + Race

- boxplot(In Weight~YRBS\$Race) >
- boxplot(In Weight~YRBS\$Sex) >
- table(YRBS\$Race) >
- YRBS2 <- YRBS[which(YRBS\$Race=='Black') > YRBS\$Race=='White' | YRBS\$Race=='Hisp'),]
- table(YRBS2\$Race) >
- In Weight2<-log(YRBS2\$Weight kg) >
- In Height2<-log(YRBS2\$Height m) >
- YRBS2\$Race<-factor(YRBS2\$Race) >
- boxplot(In Weight2~YRBS2\$Race) >
- lm3<-lm(ln Weight2~ln Height2 + > YRBS2\$Sex + YRBS2\$Race)
- summary(Im3) >
- par(mfrow=c(2,2)) >
- plot(lm3) >
- par(mfrow=c(1,1)) >

Multiple R-squared: 0.2372, Adjusted R-squared: 0.2322 F-statistic: 48.11 on 4 and 619 DF, p-value: < 2.2e-16

0.00

42 43 44 44

Fitted values

Female Male YRBS\$Sex

114	AI/AN	Asian	Black	Hisp	Multiple_Hisp	Multiple_NH	NH/PI	White
	4	21	256	177	198	23	3	191
0	AI/AN	Asian	Black	Hisp	Multiple_Hisp	Multiple_NH	NH/PI	White
	0	0	256	177	0	0	0	191

Call:

Im(formula = In_Weight2 ~ In_Height2 + YRBS2\$Sex + YRBS2\$Race)

Step-by-step Examples $1_{\delta \to \Box}^{\diamond \leftarrow \circ}$

#Comparison of Models

> anova(lm1, lm2)

> lm4 < Im(In_Weight2~In_Height2)
> auremany(Im 4)

> summary(Im4)

> anova(lm4, lm3)

Analysis of Variance Table

Model 1: In_Weight ~ In_Height Model 2: In_Weight ~ In_Height * YRBS\$Age Res.Df RSS Df Sum of Sq F Pr(>F) 1 871 33.996 2 869 33.537 2 0.45886 5.9449 0.002727 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Analysis of Variance Table

Model 1: ln_Weight2 ~ ln_Height2 Model 2: ln_Weight2 ~ ln_Height2 + YRBS2\$Sex + YRBS2\$Race Res.Df RSS Df Sum of Sq F Pr(>F) 1 622 24.211 2 619 23.525 3 0.6853 6.0105 0.0004864 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call: Im(formula = In_Weight2 ~ In_Height2)

Residuals:

Min 1Q Median 3Q Max -0.50305 -0.13383 -0.04251 0.10190 0.79625

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.3244 0.0666 49.91 <2e-16 *** In_Height2 1.6765 0.1285 13.05 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.1973 on 622 degrees of freedom Multiple R-squared: 0.2149, Adjusted R-squared: 0.2137 F-statistic: 170.3 on 1 and 622 DF, p-value: < 2.2e-16

DACCOTA DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

1.	What are the four assumptions of basic linear	r regression?	
2.	Can you still run linear regression if your Y var not?	riable is not normally distributed? Why or why	
3. (ch	In the figure to the right, the red line represer , the blue dots represent the and the black lines represents the oices: residuals, observed values, predicted valu	nts the 	
4.	To the right is part of the summary table from R for the distance as a function of speed. Is speed significant? If so, why? How much variation does speed explain? #> Coef #> #> #> (Inte #> spee #> Mult #> F-sta	ficients: Estimate Std. Error t value Pr(> t) ercept) -17.5791 6.7584 -2.601 0.0123 * ed 3.9324 0.4155 9.464 1.49e-12 *** tiple R-squared: 0.6511, Adjusted R-squared: 0.6438 etistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12	
5.	Suppose you want to determine if average year gender, and region. You also want to account for How would you set up your regression model? a) Im(IQ ~ income + age gender + region) b) Im(IQ~ income + age*gender + region) c) Im(Age gender ~ income + IQ + region) d) Im(Age*gender ~ income + IQ + region) e) Im(income ~ IQ + age*gender + region) f) Im(income ~ IQ + age*gender + region)	r income (income) can be predicted by IQ, age, or the interaction between gender and region.	

1. What are the four assumptions of basic linear regression?	Linearity, Homoscedasticity, Independence, Normality
2. Can you still run linear regression if your Y variable is not normally distributed? Why or why not?	Yes, you can. You can use a generalized linear model, using the appropriate distribution. Examples of common generalized models are logistic (binary data) and Poisson (count) models.
 3. In the figure to the right, the red line represents the, the blue dots represent the, and the black lines represents the (choices: residuals, observed values, predicted values) 	In the figure to the right, the red line represents the predicted values , the blue dots represent the observed values and the black lines represents the residuals .
 4. To the right is part of the summary table from R for the distance as a function of speed. Is speed significant? If so, why? How much variation does speed explain? 4. To the right is part of the summary table from R for the distance as a function of speed. Is speed 3.9324 0.4155 9.464 1.49e-12 *** 4. To the right is part of the summary table from R for the distance as a function of speed. Is speed 3.9324 0.4155 9.464 1.49e-12 *** 4. To the right is part of the summary table from R for the distance as a function of speed. Is speed 3.9324 0.4155 9.464 1.49e-12 *** 4. To the right is part of the summary table from R for the distance as a function of speed. Is speed 3.9324 0.4155 9.464 1.49e-12 *** 4. Wultiple R-squared: 0.6511, Adjusted R-squared: 0.6438 #> F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12 	Yes, the p-value (9.464 1.49e-12) is significant. Based on the R-squared, speed explains about 65% of the variation in distance.
 5. Suppose you want to determine if average year income (income) can be predicted by IQ, age, gender, and region. You also want to account for the interaction between gender and region. How would you set up your regression model? a) Im(IQ ~ income + age gender + region) b) Im(IQ~ income + age*gender + region) c) Im(Age gender ~ income + IQ + region) d) Im(Age*gender ~ income + IQ + region) e) Im(income ~ IQ + age*gender + region) f) Im(income ~ IQ + age*gender + region) 	f) Lm(income ~ IQ + age*gender + region)

Step-by-step Examples 2

Youth Risk Behaviors Survey 2 (Logistic)

- A. Can we predict whether a student got into a fight by weight?
- B. Can we predict whether a student got into a fight by sex, age, height, and weight?

Warp Breaks (Poisson)

C. Is the number of breaks different across wool type and tension?

Step-by-step Examples 2

Can we predict whether a student got into a fight by weight?

PROC IMPORT datafile='/home/.../YRBS_Example_2.csv' dbms=csv out=youth replace; getnames=yes;

PROC PRINT data=youth(obs=10);

PROC FREQ data=youth;

tables Fighting_b;

```
PROC LOGISTIC data=youth plots=effect;
```

where age in (3,4,5,6,7);

model Fighting_b(event='Yes')=Weight;

Daccotá. DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

Step-by-step Examples 2

Can we predict whether a student got into a fight by sex, age, height, and weight?

PROC FREQ data=youth;

where age in (3,4,5,6,7);

tables Fighting_b*Sex;

tables Fighting_b*Age;

PROC GLIMMIX data=youth;

where age in (3,4,5,6,7);

class Sex Age;

model Fighting_b(event='Yes')=Sex Age Height Weight /dist=binary oddsratio;

					Odds Rati	o Estimate	s				
Sex	Age	Height	Weight	_Sex	_Age	_Height	_Weight	Estimate	DF	95% Cor Lim	nfidence nits
Female		1.7045	67.522	Male		1.7045	67.522	0.416	4703	0.341	0.508
	3	1.7045	67.522		7	1.7045	67.522	1.722	4703	1.263	2.348
	4	1.7045	67.522		7	1.7045	67.522	1.791	4703	1.381	2.324
	5	1.7045	67.522		7	1.7045	67.522	1.503	4703	1.158	1.951
	6	1.7045	67.522		7	1.7045	67.522	1.121	4703	0.860	1.462
		2.7045	67.522			1.7045	67.522	1.039	4703	0.354	3.046
		1.7045	68.522			1.7045	67.522	1.006	4703	1.001	1.010

Effects of continuous variables are assessed as one unit offsets from the mean. The AT suboption modifies the reference value and the UNIT suboption modifies the offsets.

The GLIMMIX procedure is modeling the probability that Fighting_b='Yes'.

Fit Statistics	
-2 Log Likelihood	4552.73
AIC (smaller is better)	4568.73
AICC (smaller is better)	4568.76
BIC (smaller is better)	4620.39
CAIC (smaller is better)	4628.39
HQIC (smaller is better)	4586.89
Pearson Chi-Square	4708.24
Pearson Chi-Square / DF	1.00

	Type III Te	ests of Fixe	ed Effects	
Effect	Num DF	Den DF	F Value	Pr > F
Sex	1	4703	74.17	<.0001
Age	4	4703	8.10	<.0001
Height	1	4703	0.00	0.9443
Weight	1	4703	5.57	0.0183

Step-by-step Examples 2

Is the number of breaks different across wool type and tension?

PROC IMPORT datafile='/home/.../warpbreaks.csv' dbms=csv out=warp replace; getnames=yes;

PROC PRINT data=warp(obs=10);

PROC GLIMMIX data=warp;

Daccotá

ON TRANSLATIONAL ACTIVITY

class wool tension; model breaks=wool|tension/dist=poisson; lsmeans wool*tension /ilink cl; ods output LSMeans=warp_lsm;

wool

В

tension

Н

1

Μ

Н

PROC SGPLOT data=warp_lsm;

vbarparm category=wool response=Mu/ group=tension groupdisplay=cluster

limitupper=UpperMu limitlower=LowerMu;

DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

1.	What type of regression should be use What type of regression should be use	ed for bir ed for co	nary respo unt respo	onse data nse data?	(0/1,	Yes/N	o, etc.)	?			Logistic Poisson	
2.	If you want to display the number of c a) PROC UNIVARIATE b) PROC MEANS	observati c) d)	ons acros PROC FRI PROC LO	s groups i EQ GISITIC	n SAS	, what	t proced	dure sho	ould you	use?	c) PROC FREQ	
3.	Generally speaking, what does the fol Variable1*Variable2	lowing te	erm mear	in SAS?							The interaction between Variable1 and Variable2	
4.	To the right are odds ratios from a			_	Odds	Ratio Es	stimates		_		Races 2, 3, and 4 all have significantly lower odds	
	logistic regression. Do any of the	c regression. Do any of the RACE SEX		_RACE _SEX		E	stimate	DF	95% Confidence DF Limits		than Race 1. The upper confidence limits are all below 1.0	
	lower odds than the reference?	2		1			0.866	263E3	0.840	0.893	5CIOW 1.0.	
	How and why? What about for	3		1			0.838	263E3	0.781	0.899	Sex 2 has significantly higher odds than Sex 1. The	
	sex?	4		1			0.753	263E3	0.700	0.810	lower confidence limit is above 1.0.	
			2		1		1.202	263E3	1.183	1.222		
5.	To the right are the Type III tests of fix	ed effect	s from			Type II	I Tests of	f Fixed Eff	ects		Year is significant because the p value is <0.05	
	a Poisson regression. Which variable	s are sigr	ificant?	Effect		Num D	F Den [)F	- Value	Pr > F	Naithar Bagian par the interaction between Vear	
	vviiy!			Year			1	30	151.70	<.0001	and Region (Year*Region) is significant because	
				Region			1 :	30	0.10	0.7589	the p values are not <0.05.	
				Year*Regio	on		1 :	30	0.09	0.7616		

- The art of model building
- Variable inclusion
- Interpretation of complex models
- Distributions
- Model fit:
 - Residuals, Pearson Chi-Square/DF, AICc, etc.
 - Underfitting
 - Overfitting
- Computing considerations
 - Can do same procedures across software systems and functions/procedures
 - Computers are fast but dumb -> you need to be the one with understanding
- Correlation and causation

for the owl data.

Zuur, A. F., Ieno, E. N., & Freckleton, R. (2016). A protocol for conducting and presenting results of regressiontype analyses. *Methods in Ecology and Evolution*, 7(6), 636-645. doi:10.1111/2041-210x.12577

Protocol for conducting and presenting results of regression-type analyses 1. State appropriate questions 2. Visualize the experimental design 3. Conduct data exploration 4. Identify the dependency structure in the data 5. Present the statistical model 6. Fit the model 7. Validate the model 8. Interpret and present the numerical output of the model 9. Create a visual representation of the model 10. Simulate from the model

Table 1. Estimated regression parameters, standard errors, z-values and P-values for the Poisson GLMM presented in eqn (1). The estimated value for σ_{Nest} is 0.484.

	Estimate	Std. error	z value	P-value
Intercept	5.169	0.292	17.665	<0.05
FoodTreatmentSatiated	-0.654	0.468	-1.395	0.162
ArrivalTime	-0.129	0.011	-11.472	<0.05
SexParentMale	-0.009	0.045	-0.508	0.834
FoodTreatmentSatiated : SexParentMale	0.129	0.070	1.842	0.065
FoodTreatmentSatiated : ArrivalTime	-0.000	0.019	-0.026	0.979

Brown, D. R., & Blanton, C. J. (2007). Physical Activity, Sport Participation, and Suicidal Behavior. *Medicine and Science in Sports and Exercise*, 39(12), 2248-2257.

Characteristic	Total % Suicidal Behavior	Men % Suicidal Behavior	Women % Suicidal Behavio
Gender	11.4 (±1.0;4728)	11.2 (±1.3;1797)	11.7 (±1.4;290
Age group (years)			
18-24	13.2 (±1.4:2868)	13.0 (±2.0:1184)	13.5 (±1.9:168
≥25	8.4 (±1.3;1766)	7.2 (±2.3; 588)	9.2 (±1.7;117
Race/ethnic group			
White non-Hispanic	10.6 (±1.0:2919)	9.7 (±1.4:1108)	11.4 (±1.5;181
Black non-Hispanic	11.0 (±2.6: 631)	12.5 (±4.8; 204)	10.1 (±3.0; 42
Hispanic	12.4 (±3.0: 693)	14.0 (±5.0: 279)	11.3 (±3.5: 41
Asian/Pacific Islander	16.8 (±5.3; 258)	17.0 (±7.1: 124)	16.5 (±7.9: 13
Other	17.7 (±6.2; 159)	17.7 (±9.2; 323)	17.8 (±9.4; 8
Cigarette smoking status			
Never	9.6 (±1.1:3192)	9.5 (±1.5:1223)	9.7 (±1.4;195
Former	12.7 (±3.4; 469)	13.5 (±6.0; 172)	12.2 (±3.9; 29
Current	17.7 (±2.8; 878)	17.2 (±4.2; 323)	18.0 (±3.9; 54
Previous 30-day heavy episodic alcohol use			
Yes	14.2 (±1.7;1476)	13.0 (±2.3; 744)	15.7 (±2.8; 72
No	10.0 (±1.2;3132)	9.7 (±2.1;1007)	10.3 (±1.5;211
Lifetime ever drug use			
None	8.3 (±1.1;2511)	7.4 (±1.7; 911)	9.1 (±1.6;158
1–9 times	12.1 (±2.1; 886)	12.5 (±3.9; 325)	11.9 (±2.4; 55
10–39 times	16.1 (±3.6; 472)	16.6 (±6.3; 174)	15.8 (±4.4; 29
\geq 40 times	16.7 (±2.8; 845)	16.3 (±3.9; 381)	16.6 (±3.8; 46
BMI ² and Perceived overweight (Yes or No)			
$BMI \ge 25/No$	7.4 (±3.2; 329)	7.4 (±3.5; 265)	8.1 (±7.1; 6
BMI ≥ 25/Yes	13.0 (±1.8;1374)	11.1 (±2.4; 511)	14.4 (±2.7; 85
BMI < 25/No	10.7 (±1.2;2350)	11.5 (±2.3; 940)	10.0 (±1.6;140
BMI < 25/Yes	13.4 (±3.0; 611)	18.7 (±10.8; 69)	12.4 (±2.9; 53)

¹ Suicidal behavior is defined as thoughts about, planning for, or attempting suicide.
² Body Mass Index (BMI) cutpoints for overweight are based on National Institutes of Health, and National Heart, Lung, and Blood Institute guidelines.

Category of physical acti	ivity Samp	Unadjusted Prev le Size of Suicidal Beh	alence Unadjusted avior Prevalence Rat	Adjusted Odds Ratio io (95% CI) ²
No reported physical activity	3	35 13.57	1.00	1.00 (referent)
Low active	4	96 8.23	0.57	0.54 (0.33,0.88)
Moderately active	1	96 10.85	0.77	0.70 (0.36,1.39)
Vigorously active (3–5 days/week)) 5	73 12.74	0.93	1.12 (0.68,1.83)
Frequently vigorously active (6-7	days/week) 1	97 10.13	0.72	0.87 (0.47,1.64)
TABLE 4. Prevalence of suicidal behav	ior ¹ by intramural or extramura	I sports participation among college	men, National College Health Risk I	Behavior Survey, 1995.
TABLE 4. Prevalence of suicidal behav Category of sports participation	ior ¹ by intramural or extramura Sample Size	Il sports participation among college Unadjusted Prevalence of Suicidal Behavior	men, National College Health Risk I Unadjusted Prevalence Ratio	Behavior Survey, 1995. Adjusted Odds Ratio (95% Cl) ²
TABLE 4. Prevalence of suicidal behav Category of sports participation Sports participation	ior ¹ by intramural or extramura Sample Size 428	Il sports participation among college Unadjusted Prevalence of Suicidal Behavior 7.27	men, National College Health Risk I Unadjusted Prevalence Ratio 1.00	Behavior Survey, 1995. Adjusted Odds Ratio (95% Cl) ² 1.00 (referent)
TABLE 4. Prevalence of suicidal behav Category of sports participation Sports participation No sports participation	ior ¹ by intramural or extramura Sample Size 428 1363	il sports participation among college Unadjusted Prevalence of Suicidal Behavior 7:27 12:54	men, National College Health Risk I Unadjusted Prevalence Ratio 1.00 1.83	Behavior Survey, 1995. Adjusted Odds Ratio (95% Cl) ² 1.00 (referent) 2.46 (1.52,3.99)

Damgaard, C. F., Irvine, K. M., & Stott, I. (2019). Using the beta distribution to analyse plant cover data. *Journal of Ecology*, *107*(6), 2747-2759. doi:10.1111/1365-2745.13200

DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

- Linear regression covers a vast swath of statistical models
- The type of regression depends on your response and predictor variables
- Need to consider assumptions and model fit
- Typically an iterative process
- Take your time

 Tune in next time for a plunge into advanced topics of Linear Regression in Module III: Deep Dive

Daccotá DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY

Acknowledgements

- The DaCCoTA is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729.
- For the labs that use the Biostatistics, Epidemiology, and Research Design Core in any way, including this Module, please acknowledge us for publications. "Research reported in this publication was supported by DaCCoTA (the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729)".

Daccota DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY