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Introduction

• Linear regression is a foundational 
statistical technique

• Takes on many forms
• Broad Outline, Predictor Variable, 

Response Variable, Other Considerations

• Here, we’ll look in more details at the 
underpinning

• Also, we’ll go through several examples



Rationales
When should you use linear 

regression?
• Want to predict a variable’s value

• Want to model the relationship between 
Y variable and X variable(s)

• Both Y and X and typically numerical

• Expect there to be a linear relationship

X variable(s) →
Y variable ↓

Categorical Numerical Categorical + 
Numerical

Categorical Chi-Square Regression Regression

Numerical ANOVA* Regression Regression



Rationales
What assumptions are there for 

basic linear regression?
• Linearity – relationship between X 

and mean of Y is linear

• Homoscedasticity – the variance of 
the residuals is the same for any 
value of X

• Independence – observations do 
not depend on one another

• Normality – for any fixed value of X, 
Y follows a Gaussian distribution



Descriptions
• Variables:

• Y variable -> response, measured, dependent
• X variable -> predictor, control, independent

• Fitted/Predicted values -> values of Y generated by plugging X into model

• Residuals -> fitted values minus the actual observed values of Y

• Ordinary least squares:
• Minimizes the squared distance between each Y value and line
• Creates line of best fit

• Variable types:
• Numerical: discrete, continuous
• Categorical: ordinal, nominal
• Fixed and Random

• Distributions:
• Normal/Gaussian
• Log Normal
• Binomial
• Poisson
• Negative Binomial
• Beta
• Etc.



Step-by-step Examples 1

Youth Risk Behaviors Survey
A. Can we predict weight from height?

B. Can we predict weight from height and 
age?

C. Can we predict weight from height, age, 
gender, and race/ethnicity?



Height_m Weight_kg Race             Sex       Fight   Age
1     1.32         40.82               Black           Female    No    15
2     1.35         58.97               Black           Female   Yes    15
3     1.37         44.00               Black           Female    No    16
4     1.45         54.43               Hisp Male       No    17
5     1.45         42.64               Black           Female   Yes    16

Step-by-step Examples 1  
>YRBS<-read.csv('YRBS_Example.csv')
>head(YRBS)

>summary(YRBS$Height_m)
>summary(YRBS$Weight_kg)

>hist(YRBS$Height_m, col='red')
>hist(YRBS$Weight_kg, col='blue’)

>ln_Weight<-log(YRBS$Weight_kg)
>ln_Height<-log(YRBS$Height_m)

>hist(ln_Weight, col='red')
>hist(ln_Height, col='blue')

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
1.320   1.600   1.680   1.675   1.750   2.010     114

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
36.29   55.34   63.50   67.17   74.84  151.05     114 



Step-by-step Examples 1

#Weight = Height
>lm1 <-lm(ln_Weight~ln_Height)
>summary(lm1)
>par(mfrow=c(2,2))
>plot(lm1)
>par(mfrow=c(1,1))
>plot(ln_Weight~ln_Height)
>abline(3.24,1.84)

Call:
lm(formula = ln_Weight ~ ln_Height)

Residuals:
Min       1Q   Median       3Q      Max 

-0.51216 -0.13726 -0.03131  0.10775  0.81904 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.23654    0.05703   56.76   <2e-16 ***
ln_Height 1.83699    0.11025   16.66   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1976 on 871 degrees of freedom
(114 observations deleted due to missingness)

Multiple R-squared:  0.2417, Adjusted R-squared:  0.2408 
F-statistic: 277.6 on 1 and 871 DF,  p-value: < 2.2e-16



Step-by-step Examples 1
#Weight = Height + Age
> plot(ln_Weight~YRBS$Age)
> plot(ln_Height~YRBS$Age)

> lm2<-
lm(ln_Weight~ln_Height*YRBS$Age)

> summary(lm2)
> par(mfrow=c(2,2))
> plot(lm2)
> par(mfrow=c(1,1))

Call:
lm(formula = ln_Weight ~ ln_Height * YRBS$Age)

Residuals:
Min       1Q   Median       3Q      Max 

-0.50566 -0.13501 -0.03491  0.10430  0.83447 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)         3.22099    0.77650   4.148 3.68e-05 ***
ln_Height 1.27217    1.51109   0.842     0.40    
YRBS$Age 0.00177    0.04774   0.037     0.97    
ln_Height:YRBS$Age 0.03331    0.09280   0.359     0.72    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1965 on 869 degrees of freedom
(114 observations deleted due to missingness)

Multiple R-squared:  0.2519, Adjusted R-squared:  0.2494 
F-statistic: 97.56 on 3 and 869 DF,  p-value: < 2.2e-16



Step-by-step Examples 1
#Weight = Height + Age + Gender + Race
> boxplot(ln_Weight~YRBS$Race)
> boxplot(ln_Weight~YRBS$Sex)
> table(YRBS$Race)
> YRBS2 <- YRBS[ which(YRBS$Race=='Black'| 

YRBS$Race=='White' | YRBS$Race=='Hisp') ,]
> table(YRBS2$Race)

> ln_Weight2<-log(YRBS2$Weight_kg)
> ln_Height2<-log(YRBS2$Height_m)
> YRBS2$Race<-factor(YRBS2$Race)
> boxplot(ln_Weight2~YRBS2$Race)

> lm3<-lm(ln_Weight2~ln_Height2 + 
YRBS2$Sex + YRBS2$Race)

> summary(lm3)
> par(mfrow=c(2,2))
> plot(lm3)
> par(mfrow=c(1,1))

AI/AN         Asian         Black      Hisp Multiple_Hisp Multiple_NH NH/PI      White                                
114             4                21             256           177           198                         23                   3           191 

AI/AN         Asian         Black      Hisp Multiple_Hisp Multiple_NH NH/PI      White                    
0                 0                  0             256           177             0                              0            0           191 

Call:
lm(formula = ln_Weight2 ~ ln_Height2 + YRBS2$Sex + YRBS2$Race)

Residuals:
Min       1Q   Median       3Q      Max 

-0.51826 -0.13125 -0.03368  0.09829  0.77320 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)      3.32178    0.06740  49.286  < 2e-16 ***
ln_Height2       1.73981    0.12895  13.492  < 2e-16 ***
YRBS2$SexMale    0.06794    0.11355   0.598    0.550    
YRBS2$RaceHisp  -0.08835    0.11330  -0.780    0.436    
YRBS2$RaceWhite -0.07789    0.01873  -4.158 3.67e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1949 on 619 degrees of freedom
Multiple R-squared:  0.2372, Adjusted R-squared:  0.2322 
F-statistic: 48.11 on 4 and 619 DF,  p-value: < 2.2e-16



Step-by-step Examples 1

#Comparison of Models

> anova(lm1, lm2)

> lm4 <-
lm(ln_Weight2~ln_Height2)

> summary(lm4)

> anova(lm4, lm3)

Analysis of Variance Table

Model 1: ln_Weight ~ ln_Height
Model 2: ln_Weight ~ ln_Height * YRBS$Age

Res.Df RSS Df Sum of Sq      F   Pr(>F)   
1    871 33.996                                
2    869 33.537  2   0.45886 5.9449 0.002727 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Call:
lm(formula = ln_Weight2 ~ ln_Height2)

Residuals:
Min       1Q   Median       3Q      Max 

-0.50305 -0.13383 -0.04251  0.10190  0.79625 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   3.3244     0.0666   49.91   <2e-16 ***
ln_Height2    1.6765     0.1285   13.05   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1973 on 622 degrees of freedom
Multiple R-squared:  0.2149, Adjusted R-squared:  0.2137 
F-statistic: 170.3 on 1 and 622 DF,  p-value: < 2.2e-16

Analysis of Variance Table

Model 1: ln_Weight2 ~ ln_Height2
Model 2: ln_Weight2 ~ ln_Height2 + YRBS2$Sex + 
YRBS2$Race

Res.Df RSS Df Sum of Sq      F    Pr(>F)    
1    622 24.211                                  
2    619 23.525  3    0.6853 6.0105 0.0004864 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Assessment 1
1. What are the four assumptions of basic linear regression? Linearity, Homoscedasticity, Independence, Normality

2. Can you still run linear regression if your Y variable is not normally distributed?  Why or why 
not?

Yes, you can.  You can use a generalized linear model, using the 
appropriate distribution.  Examples of common generalized 
models are logistic (binary data) and Poisson (count) models.

3. In the figure to the right, the red line represents the 
_________, the blue dots represent the _________,
and the black lines represents the _________.

(choices: residuals, observed values, predicted values)

In the figure to the right, the red line represents the 
predicted values, the blue dots represent the observed values
and the black lines represents the residuals.

4. To the right is part of the summary
table from R for the distance as
a function of speed.  Is speed
significant?  If so, why?  How much
variation does speed explain?

Yes, the p-value (9.464 1.49e-12) is significant.  Based on the R-
squared, speed explains about 65% of the variation in distance.

5. Suppose you want to determine if average year income (income) can be predicted by IQ, age, 
gender, and region.  You also want to account for the interaction between gender and region.  
How would you set up your regression model?

a) lm(IQ ~ income + age|gender + region)
b) lm(IQ~ income + age*gender + region)
c) lm(Age|gender ~ income + IQ + region)
d) lm(Age*gender ~ income + IQ + region)
e) lm(income ~ IQ + age:gender + region)
f) lm(income ~ IQ + age*gender + region)

f) Lm(income ~ IQ + age*gender + region)

#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -17.5791     6.7584  -2.601   0.0123 *  
#> speed         3.9324     0.4155   9.464 1.49e-12 ***

#> Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438 
#> F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12
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Step-by-step Examples 2

Youth Risk Behaviors Survey 2 (Logistic)
A. Can we predict whether a student got into a fight by weight?

B. Can we predict whether a student got into a fight by sex, age, 
height, and weight?

Warp Breaks (Poisson)
C. Is the number of breaks different across wool type and tension?



Step-by-step Examples 2

PROC IMPORT datafile='/home/…/YRBS_Example_2.csv’

dbms=csv out=youth replace; getnames=yes;

PROC PRINT data=youth(obs=10);

PROC FREQ data=youth;

tables Fighting_b;

PROC LOGISTIC data=youth plots=effect;

where age in (3,4,5,6,7);

model Fighting_b(event='Yes')=Weight; 

Fighting_b Frequency Percent

Cumulative

Frequency

Cumulative

Percent

No 3761 79.73 3761 79.73

Yes 956 20.27 4717 100.00

Probability modeled is Fighting_b='Yes'.

Obs Age Sex Height Weight Race Fighting Fighting_b Fighting_c

1 1 Male 1.6 55.79 5 1 No 0

2 1 Male 1.6 63.5 5 3 Yes 1

3 1 Male 1.57 55.79 5 4 Yes 2

4 2 Female 1.63 63.5 5 1 No 0

5 2 Female 1.68 54.43 5 1 No 0

6 2 Male 1.78 81.65 5 2 Yes 1

7 3 Female 1.45 35.38 5 1 No 0

8 3 Female 1.45 40.82 5 1 No 0

9 3 Female 1.47 44.45 5 1 No 0

10 3 Female 1.47 49.9 5 1 No 0

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard

Error

Wald

Chi-Square Pr > ChiSq

Intercept 1 -2.1325 0.1421 225.1913 <.0001

Weight 1 0.0111 0.00198 31.4967 <.0001

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates

AIC 4746.581 4718.177

SC 4753.039 4731.092

-2 Log L 4744.581 4714.177

Can we predict whether a student got 
into a fight by weight?



Step-by-step Examples 2

PROC FREQ data=youth;

where age in (3,4,5,6,7);

tables Fighting_b*Sex;

tables Fighting_b*Age;

PROC GLIMMIX data=youth;

where age in (3,4,5,6,7);

class Sex Age;

model Fighting_b(event='Yes')=Sex 
Age Height Weight /dist=binary oddsratio;

Table of Fighting_b by Sex

Fighting_b

Sex

Female Male Total

No 2120

45.00

56.41

86.78

1638

34.77

43.59

72.22

3758

79.77

Yes 323

6.86

33.89

13.22

630

13.37

66.11

27.78

953

20.23

Total 2443

51.86

2268

48.14

4711

100.00

Table of Fighting_b by Age

Fighting_b

Age

3 4 5 6 7 Total

No 417

8.85

11.10

78.68

888

18.85

23.63

75.96

935

19.85

24.88

78.84

1007

21.38

26.80

82.88

511

10.85

13.60

83.63

3758

79.77

Yes 113

2.40

11.86

21.32

281

5.96

29.49

24.04

251

5.33

26.34

21.16

208

4.42

21.83

17.12

100

2.12

10.49

16.37

953

20.23

Total 530

11.25

1169

24.81

1186

25.18

1215

25.79

611

12.97

4711

100.00

The GLIMMIX procedure is modeling the probability that Fighting_b='Yes'.

Odds Ratio Estimates

Sex Age Height Weight _Sex _Age _Height _Weight Estimate DF

95% Confidence 

Limits

Female 1.7045 67.522 Male 1.7045 67.522 0.416 4703 0.341 0.508

3 1.7045 67.522 7 1.7045 67.522 1.722 4703 1.263 2.348

4 1.7045 67.522 7 1.7045 67.522 1.791 4703 1.381 2.324

5 1.7045 67.522 7 1.7045 67.522 1.503 4703 1.158 1.951

6 1.7045 67.522 7 1.7045 67.522 1.121 4703 0.860 1.462

2.7045 67.522 1.7045 67.522 1.039 4703 0.354 3.046

1.7045 68.522 1.7045 67.522 1.006 4703 1.001 1.010

Effects of continuous variables are assessed as one unit offsets from the mean. The AT suboption modifies the reference 

value and the UNIT suboption modifies the offsets.

Fit Statistics

-2 Log Likelihood 4552.73

AIC (smaller is better) 4568.73

AICC (smaller is better) 4568.76

BIC (smaller is better) 4620.39

CAIC (smaller is better) 4628.39

HQIC (smaller is better) 4586.89

Pearson Chi-Square 4708.24

Pearson Chi-Square / DF 1.00

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Sex 1 4703 74.17 <.0001

Age 4 4703 8.10 <.0001

Height 1 4703 0.00 0.9443

Weight 1 4703 5.57 0.0183

Can we predict whether a student 
got into a fight by sex, age, height, 
and weight?



Step-by-step Examples 2

PROC IMPORT datafile='/home/…/warpbreaks.csv’ 
dbms=csv out=warp replace; 
getnames=yes;

PROC PRINT data=warp(obs=10);

PROC GLIMMIX data=warp;

class wool tension;

model breaks=wool|tension/dist=poisson;

lsmeans wool*tension /ilink cl;

ods output LSMeans=warp_lsm;

PROC SGPLOT data=warp_lsm;

vbarparm category=wool response=Mu/ 
group=tension groupdisplay=cluster 

limitupper=UpperMu limitlower=LowerMu;

Is the number of breaks different across 
wool type and tension?

Obs breaks wool tension

1 26 A L

2 30 A L

3 54 A L

4 25 A L

5 70 A L

6 52 A L

7 51 A L

8 26 A L

9 67 A L

10 18 A M

Fit Statistics

-2 Log Likelihood 456.97

AIC (smaller is better) 468.97

AICC (smaller is better) 470.76

BIC (smaller is better) 480.90

CAIC (smaller is better) 486.90

HQIC (smaller is better) 473.57

Pearson Chi-Square 180.67

Pearson Chi-Square / DF 3.76

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

wool 1 48 11.64 0.0013

tension 2 48 31.71 <.0001

wool*tension 2 48 13.91 <.0001

wool*tension Least Squares Means

wool tension Estimate

Standard

Error DF t Value Pr > |t| Alpha Lower Upper Mean

Standard

Error

Mean

Lower

Mean

Upper

Mean

A H 3.2009 0.06727 48 47.59 <.0001 0.05 3.0657 3.3362 24.5556 1.6518 21.4492 28.1118

A L 3.7967 0.04994 48 76.03 <.0001 0.05 3.6963 3.8971 44.5556 2.2250 40.2992 49.2615

A M 3.1781 0.06804 48 46.71 <.0001 0.05 3.0412 3.3149 24.0000 1.6330 20.9313 27.5185

B H 2.9327 0.07692 48 38.12 <.0001 0.05 2.7780 3.0873 18.7778 1.4444 16.0870 21.9187

B L 3.3401 0.06275 48 53.23 <.0001 0.05 3.2140 3.4663 28.2222 1.7708 24.8772 32.0170

B M 3.3596 0.06214 48 54.07 <.0001 0.05 3.2347 3.4845 28.7778 1.7882 25.3980 32.6074



Assessment 2
1. What type of regression should be used for binary response data (0/1, Yes/No, etc.)? 

What type of regression should be used for count response data?
Logistic
Poisson

2. If you want to display the number of observations across groups in SAS, what procedure should you use?
a) PROC UNIVARIATE                         c) PROC FREQ
b) PROC MEANS                                 d) PROC LOGISITIC

c) PROC FREQ

3. Generally speaking, what does the following term mean in SAS?
Variable1*Variable2

The interaction between Variable1 and Variable2

4. To the right are odds ratios from a 
logistic regression.  Do any of the 
races have significantly higher or
lower odds than the reference?
How and why?  What about for 
sex?

Races 2, 3, and 4 all have significantly lower odds 
than Race 1.  The upper confidence limits are all 
below 1.0.

Sex 2 has significantly higher odds than Sex 1.  The 
lower confidence limit is above 1.0.

5. To the right are the Type III tests of fixed effects from 
a Poisson regression.  Which variables are significant?  
Why?

Year is significant because the p value is <0.05

Neither Region nor the interaction between Year 
and Region (Year*Region) is significant because 
the p values are not <0.05.

Odds Ratio Estimates

RACE SEX _RACE _SEX Estimate DF

95% Confidence 

Limits

2 1 0.866 263E3 0.840 0.893

3 1 0.838 263E3 0.781 0.899

4 1 0.753 263E3 0.700 0.810

2 1 1.202 263E3 1.183 1.222

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

Year 1 30 151.70 <.0001

Region 1 30 0.10 0.7589

Year*Region 1 30 0.09 0.7616
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Caveats and Concerns
• The art of model building
• Variable inclusion

• Interpretation of complex models

• Distributions 

• Model fit: 
• Residuals, Pearson Chi-Square/DF, AICc, 

etc.
• Underfitting
• Overfitting

• Computing considerations
• Can do same procedures across software 

systems and functions/procedures
• Computers are fast but dumb -> you 

need to be the one with understanding

• Correlation and causation

Fit Statistics

-2 Log Likelihood 4552.73

AIC (smaller is better) 4568.73

AICC (smaller is better) 4568.76

BIC (smaller is better) 4620.39

CAIC (smaller is better) 4628.39

HQIC (smaller is better) 4586.89

Pearson Chi-Square 4708.24

Pearson Chi-Square / DF 1.00



Real World Examples

Zuur, A. F., Ieno, E. N., & Freckleton, R. (2016). A protocol for conducting and presenting results of regression-
type analyses. Methods in Ecology and Evolution, 7(6), 636-645. doi:10.1111/2041-210x.12577



Real World Examples

Brown, D. R., & Blanton, C. J. (2007). Physical Activity, Sport Participation, and Suicidal Behavior. Medicine and 
Science in Sports and Exercise, 39(12), 2248-2257. 



Real World Examples

Damgaard, C. F., Irvine, K. M., & Stott, I. (2019). Using the beta distribution to analyse plant cover data. Journal 
of Ecology, 107(6), 2747-2759. doi:10.1111/1365-2745.13200



Summary and Conclusion

• Linear regression covers a vast 
swath of statistical models

• The type of regression depends 
on your response and predictor 
variables

• Need to consider assumptions 
and model fit

• Typically an iterative process

• Take your time

• Tune in next time for a plunge into advanced topics of Linear 
Regression in Module III: Deep Dive
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