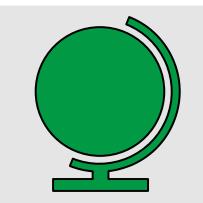
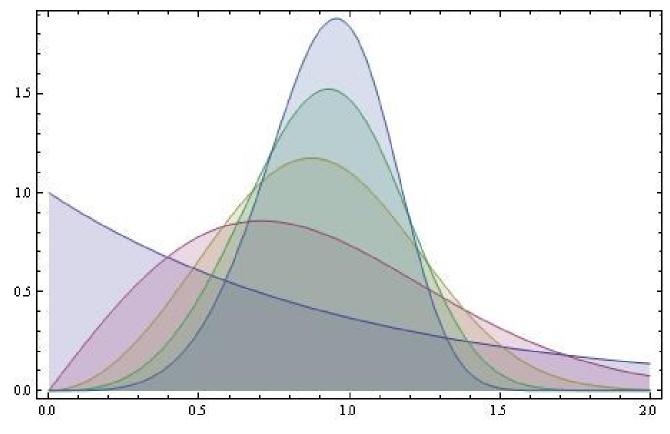

The Wide World of Distributions


BERDC Special Topics Talk 7

Biostatistics, Epidemiology, and Research Design Core

NORTH DAKOT



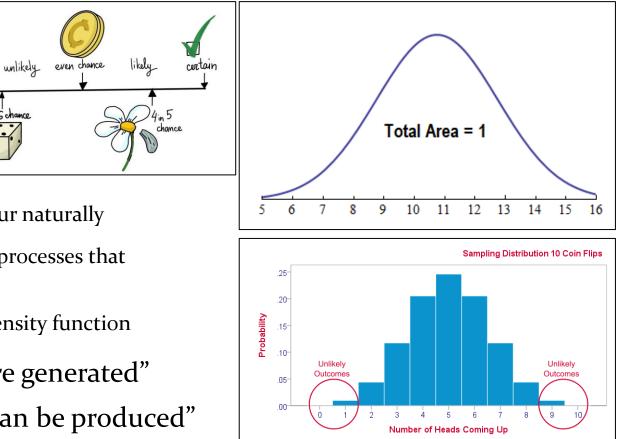
<u>Goal</u>: learn about statistical distributions

- Better statistical understanding
- Better statistical modeling
- Better statistical insights

Before Moving On:

Definition

"Function that shows the possible values for a variable and how often they occur" Properties

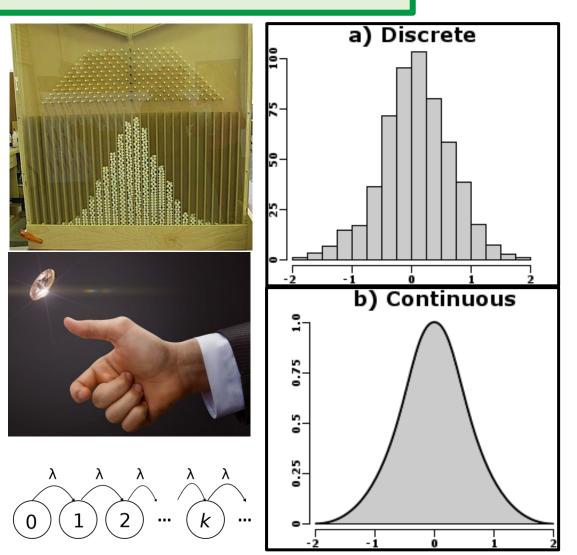

mpossible

- probability that x can take a specific value is p(x)
- p(x) is non-negative for all real x
- sum of p(x) over all x equals 1

From the variable's perspective

- variables are sampled from random distributions that occur naturally
- each random distribution tells a different story about the processes that produce that variable
- each distribution has a mean, variance, and probability density function

"Mathematical construct to describe how variables are generated" "Mathematical description of how data conceivably can be produced"


Variable origins

- Gaussian random dispersal from central point; random diffusion from mean
- Bernoulli Trial discrete event with only two outcomes (success/failure) with constant probability of success: P(success)= p.
- Poisson point process events that occur individually in continuous time (or space)

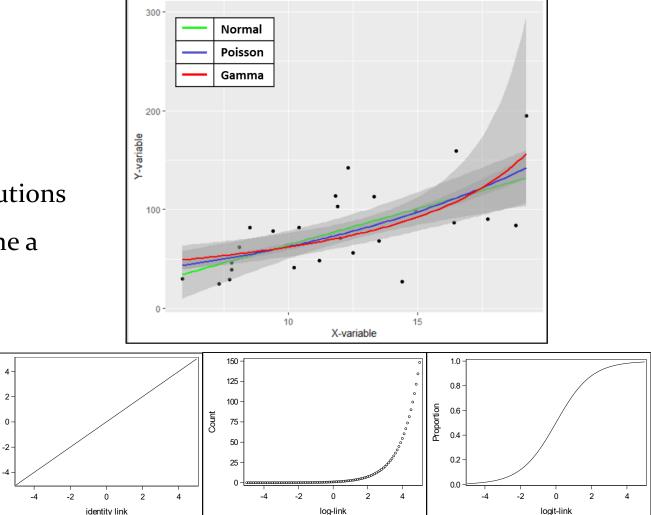
Broad classification

- Discrete takes on only integer or 'count' variables
- Continuous takes on any numerical value within range

NORTH DAK

Properties

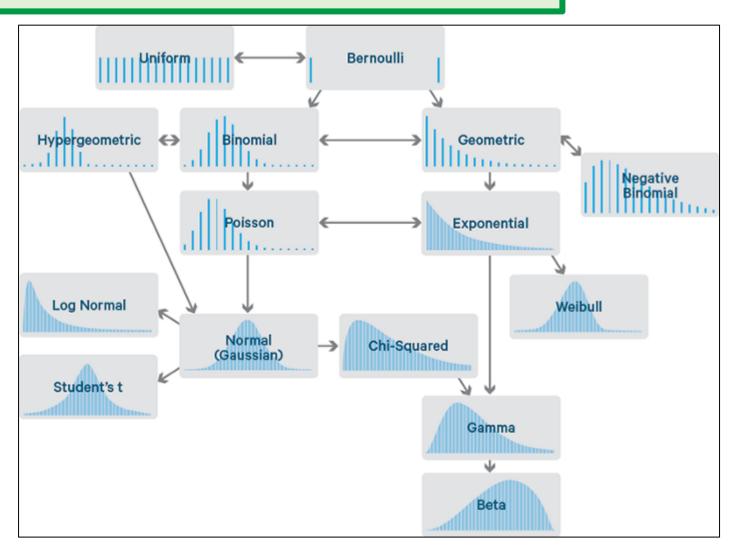
Name	Notation	Range	Mean(x)	Var(x)	Explanation		
Normal	<i>Ν</i> (μ,σ²)	-∞ < X < ∞	μ	σ²	x=dispersal from a central point, or a diffusion through a Gaussian filter, with variance independent of mean.		
Log-Normal	<i>Lognormal</i> (μ,σ²)	x > 0	exp(μ+σ²/2)	[exp(σ²)-1]* exp(2μ+σ²)	x =probability distribution whose logarithm is normally distributed.		
Exponential	<i>exp</i> (β)	x > 0	β	β²	x =time between events that occur at a rate of $\lambda = 1/\beta$.		
Gamma	Gamma(k,θ)	x > 0	kθ	kθ²	x =time it takes for k events to occur within a rate of $\lambda = 1/\theta$, or the sum of k exponential events.		
Beta	Beta(a,b)	0 < x < 1	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2 + (a+b+1)}$	x =distribution of probabilities based on a successes and b failures, where both a and $b > 1$.		
Binomial	Bin(n,p)	x = 0, 1, 2	np	np(1-p)	x =number of positive events out of n trials each with a probability of success <i>p</i> .		
Geometric	G(p)	x = 1, 2, 3	$\frac{1}{p}$	$\frac{1-p}{p^2}$	x =number of trials, with probability of success <i>p</i> , that are needed to obtain one success.		
Negative Binomial	NB(n,p)	x = 0, 1, 2	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$	x =number of failures before k successes occur in sequential independent trials, all with the same probability of success, p.		
Poisson	Poisson(λ)	x = 0, 1, 2	λ	λ	x =count of items in a standardized unit of effort that occur at rate λ .		

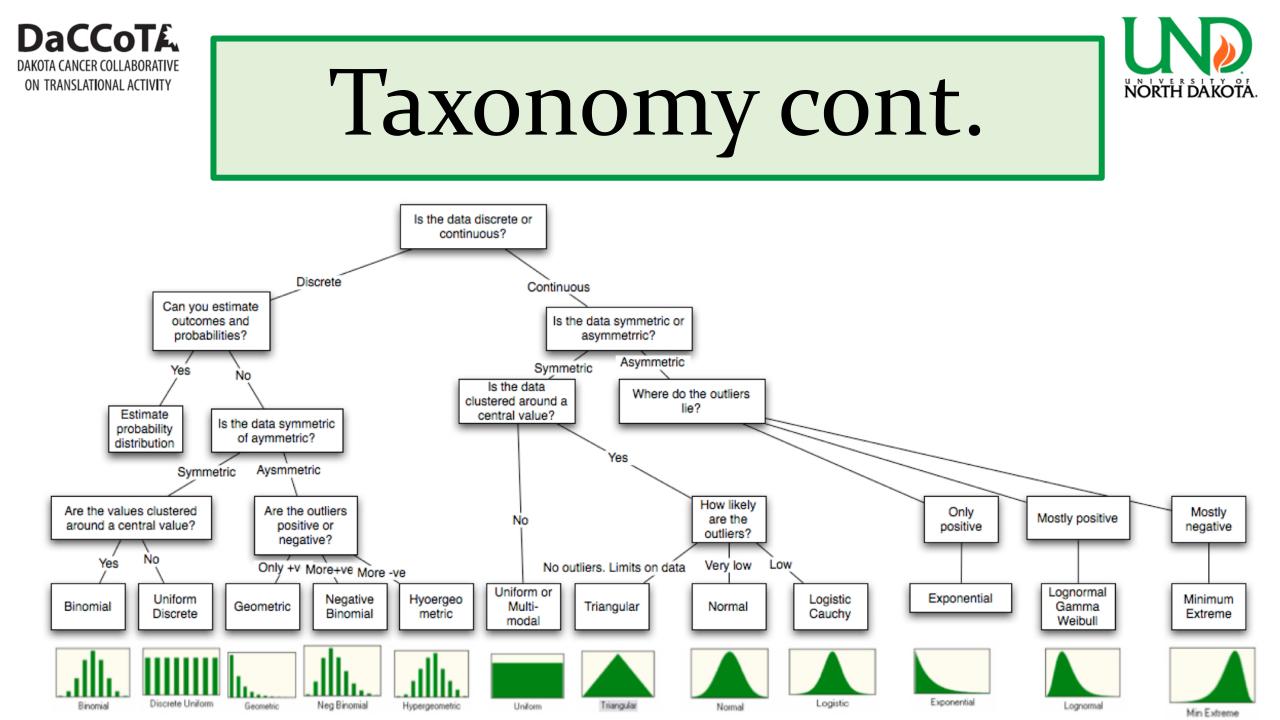


- Parametric tests assume a normal (Gaussian) distribution
 - ANOVA, t-test, linear regression, etc.
- Generalized linear models can use various distributions
 - 'generalized' refers to models that don't assume a normal distribution
 - Common Examples are Poisson and Logistic regression

How to plot results?

- Each distribution has a standard link function
- Common ones are 'identity', 'log' and 'logit'

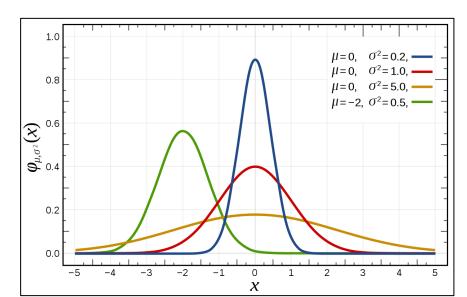



Taxonomy of Random Variables

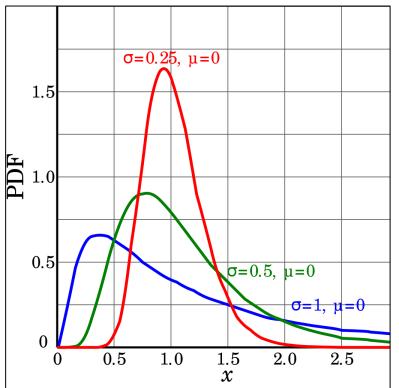
Below is a taxonomy of common distributions, classified primarily by the topology of their support.

- finite
 - Dirac
 - Bernoulli
- countable
 - binomial
 - geometric
 - Poisson
- interval
 - uniform
 - beta
- half-line
 - exponential
 - gamma

- unbounded
 - normal
 - Cauchy
 - (Lévy) stable
- transforms
 - (generalized) Pareto
 - inverse gamma
 - lognormal
- mixtures
 - ► (Gosset) Student t
 - negative-binomial
- ▶ non-parametric
 - empirical



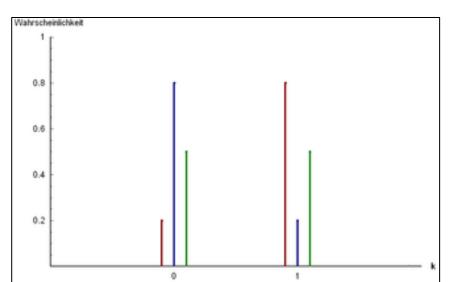
Normal & Log Normal



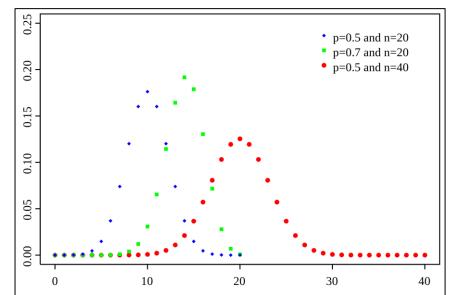
- Distribution models dispersion from central point
- Continuous, unbounded, and with a variance independent of its mean

Log Normal

• Distribution whose logtransformation is normal



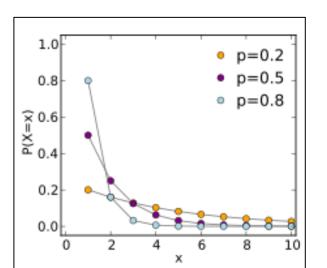
Binary & Binomial



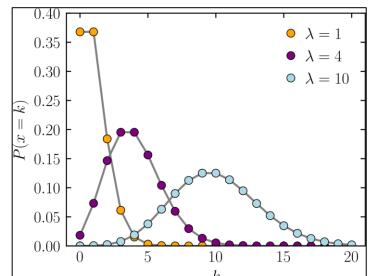
- Distribution that models binary (two) outcomes
- Aka 'Bernoulli trials'
- Example: coin flips

Binomial

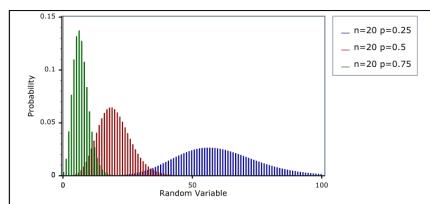
- Distribution that models the number of success from Bernoulli trials
- Example: coin flips



Geometric, Poisson, & Negative Binomial

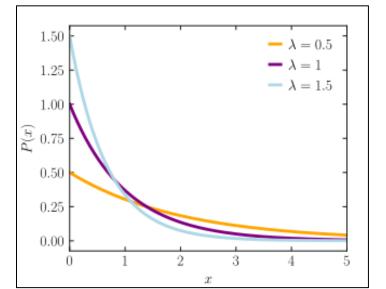

Geometric

- Distribution that models number of Bernoulli trials needed for one success
- Start at 0 or 1
- Example: coin flips until heads

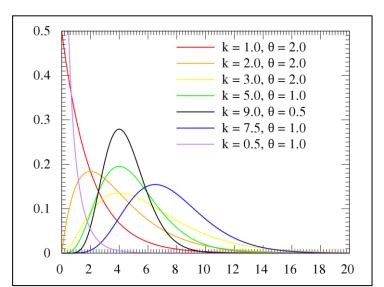

Poisson

- Distribution that models the number of counts occurring at a certain rate
- Example: number of patrons entering restaurant an hour, or number of trees per acre of woods

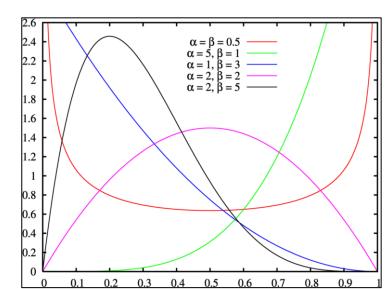
Negative Binomial


- Distribution that models the number of failures needed for a certain number of successes
- Can also be used for 'count' data as a sort of over-dispersed correction for Poisson
- Example: flip coins until 3 heads, count # of tails

Exponential, Gamma, & Beta

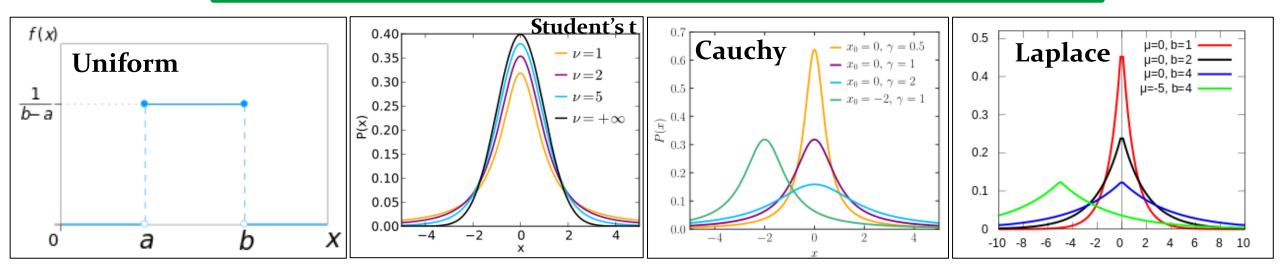

Exponential

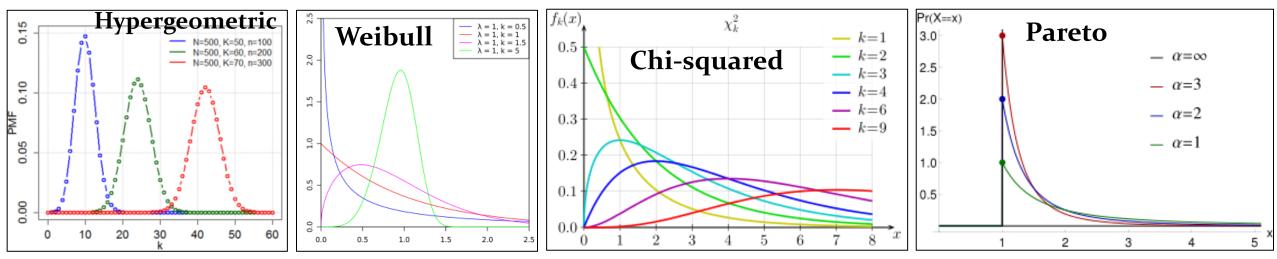
- Distribution that models the inter-arrival time between Poisson process events
- Example: time between arrive of patrons into a restaurant


Gamma

- Distribution that models the total arrival time for a number of Poisson process events
- Example: time it takes for 5 patrons to enter a restaurant

Beta


- Distribution that models a proportion of success between 0 and 1
- Example: proportion of hits out of at-bats

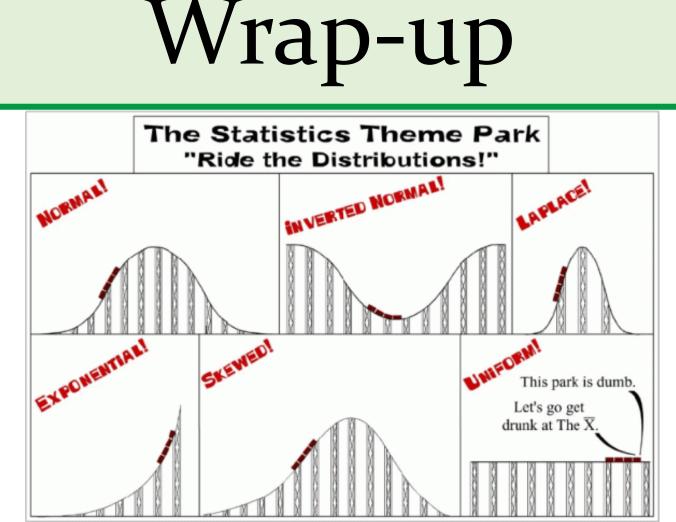


NORTH DAKOTA

SAS examples

			-					
DIST=	Distribution	Default Link Function	Numeric Value	SAS Program	nmer 👻 🚍 ? Sign Out			
BETA	beta	logit	12	CODE LOG RESULTS				
BINARY	binary	logit	4	★ ⊕ ~ □ Q □ E = → ← ★ Line # ⊙ ★ H > Ξ S 1 *Create and view distributions;				
BINOMIAL BIN B	binomial	logit	3	<pre>2 DATA rand; 3 do i=1 to 10000; 4 * generate random values for 10000 observations; 5 trt="trt"; 6 mynormal=rand("NORMAL", 85, 40);</pre>				
EXPONENTIAL EXPO	exponential	log	9					
GAMMA GAM	gamma	log	5	<pre>7 mylognormal=rand("LOGNORMAL", 1, 0.1); 8 mybeta=rand("BETA", 1,99); 9 mybinary=rand("BETA", 0.95, 1);</pre>				
GAUSSIAN G NORMAL N	normal	identity	1	<pre>9 mybinary=rand(biNoW, 0.55, 1); 10 mybinomial=rand("EXPONENTIAL", 4.2); 11 myexponential=rand("EXPONENTIAL", 4.2); 12 mygamma=rand("GAMMA", 2, 2); 13 mygeometric=rand("GEGMETRIC", 0.10); 14 mynegbinomial=rand("NEGBINOMIAL", 0.97, 1000); 15 mypoisson=rand("POISSON", 10); 16 output;</pre>				
GEOMETRIC GEOM	geometric	log	8					
INVGAUSS IGAUSSIAN IG	inverse Gaussian	inverse squared	6	17 end; 18 19 PROC PRINT data=rand(obs=20);				
		(power(–2))		20 21 PROC UNIVARIATE data=rand; 22 var mynormal mylognormal mybeta mybinary mybinomial myexponential mygamma mygeometric 23 mynegbinomial mypoisson;				
LOGNORMAL LOGN	lognormal	identity	11	24 histogram; 25 *can change around the parameters; 27 *				
MULTINOMIAL MULTI MULT	multinomial	cumulative logit	NA					
NEGBINOMIAL NEGBIN NB	negative binomial	log	7	30 *Datasets; 32 DATA Fish; set sashelp.Fish; 33 PROC PRINT data=Fish(obs=25); 34				
POISSON POI P	Poisson	log	2	<pre>35 DATA Baseball; set sashelp.Baseball; 36 PROC PRINT data=Baseball(obs=25); 37</pre>				
TCENTRAL TDIST T	t	identity	10	38 39 *Normal;				
BYOBS(variable)	multivariate	varied	NA	40 DPCC INTY/APTATE data=E3ch. /home/markwilliamson20/my_courses/markwilliamson0/MW_2021_Work/Module Examples/Distributions Examples.ses	UTF-8 ssages User: markwilliamson20			
	-							

Code available at: <u>https://med.und.edu/daccota/_files/docs/berdc_docs/distributions_sas_code.txt</u>



R examples

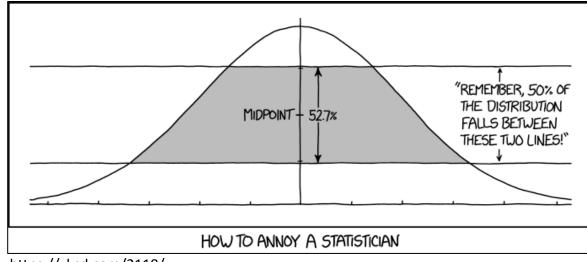
Family	Default Link Function	RStudio File Edit Code View Plots Session Build Debug Profile Tools Help The session Build Debug Profile Tools Help					
binomial	(link = "logit")	Image: Substrain the second					
gaussian	(link = "identity")	Q.* Next Prev All # Replace All In selection Match case Whole word Regex Wrap 1 #Create and view distributions					
Gamma	(link = "inverse")	2 3 mynormal <- rnorm(n =10000, mean = 85, sd = 40) 4 mylognormal <- rlnorm(n=10000, meanlog = 1, sdlog = 0.1) 5 mybeta <- rbeta(n=10000, shape1=1, shape2=99) 6 mybinary <-rbinom(n=10000, size=1, prob=0.95) 7 mybinomial <- rbinom(n=10000, size=2000, prob=0.95)					
inverse.gaussian	(link = "1/mu^2")	<pre>8 myexponential <- rexp(n=10000, rate=4.2) 9 mygamma <- rgamma(n=10000, shape=2, rate=2) #rgamma(n, shape, rate = 1, scale = 1/rate) 10 mygeometric <- rgeom(n=10000, size=1000, prob=0.97) 11 mynegbinomial <- rnbinom(n=10000, size=1000, prob=0.97) 12 mypoisson <- rpois(n=10000, lambda=10) 13 14 hist(mynormal) 15 hist(mylognormal) 16 hist(mybeta) 17 hist(mybinamial) 18 hist(mybinomial) 19 hist(myexponential) 20 hist(mygamma) 21 hist(mygeometric) 22 hist(mynegbinomial)</pre>					
poisson	(link = "log")						
quasi	(link = "identity", variance = "constant")						
quasibinomial	(link = "logit")						
quasipoisson	(link = "logit")	23 hist(mypoisson) 24 25 #can change around the parameters 100.1 10 (Untitled) \$					
		ien 👼 (auges) k					

Code available at: <u>https://med.und.edu/daccota/_files/docs/berdc_docs/distributions_r_code.txt</u>

Please take the post-test and survey:

Post-test: <u>https://und.qualtrics.com/jfe/form/SV_5swKhmpU4tO7hau</u> Survey: <u>https://und.qualtrics.com/jfe/form/SV_5o370oBxAOTtMr4</u>

References



Images:

- <u>https://www.wolfram.com/mathematica/newin6/content/SymbolicStatisticalComputing/BuiltinStatisticalDistributions.html</u>
- <u>https://pierpaolo28.github.io/blog/blog19/</u>
- <u>https://courses.lumenlearning.com/wmopen-concepts-statistics/chapter/continuous-probability-distribution-2-of-2/</u>
- <u>https://www.spss-tutorials.com/sampling-distribution-what-is-it/</u>
- <u>https://medium.com/analytics-vidhya/probability-distributions-444e7babf2e1</u>
- <u>https://www.kdnuggets.com/2020/02/probability-distributions-data-science.html</u>
- <u>https://www-users.cse.umn.edu/~dodso013/fm503/0910/lectures/fall2.pdf</u>
- <u>https://tinyheero.github.io/2016/03/17/prob-distr.html</u>
- <u>https://en.wikipedia.org/wiki/List_of_probability_distributions</u>
- <u>https://loonylabs.files.wordpress.com/2019/10/distribution-park-joke.gif?w=590</u>

Materials:

- <u>https://365datascience.com/tutorials/statistics-tutorials/distribution-in-statistics/</u>
- <u>https://www.itl.nist.gov/div898/handbook/eda/section3/eda361.htm</u>
- <u>https://www.statisticshowto.com/negative-binomial-experiment/</u>
- <u>https://www-users.cse.umn.edu/~dodso013/fm503/0910/lectures/fall2.pdf</u>
- <u>https://medium.com/@srowen/common-probability-distributions-347e6b945ce4</u>
- <u>https://www.causascientia.org/math_stat/Dists/Compendium.pdf</u>

https://xkcd.com/2118/

Acknowledgements

- The DaCCoTA is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729.
- For the labs that use the Biostatistics, Epidemiology, and Research Design Core in any way, including this Module, please acknowledge us for publications. *"Research reported in this publication was supported by DaCCoTA* (the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729)".

Daccota DAKOTA CANCER COLLABORATIVE ON TRANSLATIONAL ACTIVITY