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Introduction
What is Bayesian analysis?

• Method of assigning probability to events [1]

• Takes in prior beliefs (hypothesis) and evidence (data) to generate 
posterior beliefs (probability)

• Fundamental concept is Bayes’ Theorem

• Characterized by intuitive theory but complicated computation in most 
actual usage

• Alternative to ‘Frequentist’ approaches

• Can use Bayesian approach for most Frequentist methods

• Encodes expert opinion and domain-specific knowledge into system [3]

• Predictions are a distribution of likely answers, allowing for risk 
assessment [3]

Bayes’ Theorem: 

𝑃 ℎ𝑦𝑝 𝑑𝑎𝑡𝑎 =
𝑃 𝑑𝑎𝑡𝑎 ℎ𝑦𝑝 𝑃(ℎ𝑦𝑝)

𝑃(𝑑𝑎𝑡𝑎)

[2]
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History
Thomas Bayes

• English statistician, philosopher and 
Presbyterian minister [4]

• Born 1701 and died 1761
• Attended University of Edinburgh
• Bayes’ Theorem taken from posthumous 

paper (1763)

Afterwards
• Pierre-Simon Laplace developed the 

Bayesian interpretation of probability
• Not commonly used unto the 1950’s 

(philosophical and practical 
considerations)



History Cont.
Bayesians vs. Frequentists

Frequentist
• probability of events in long term [5]
• depends on number coin flips, times experiment is run, sample size, 

etc.
• parameters are fixed, data is random [6]
• run to get p-value to test probability of test statistic, given H0[6]

Bayesian
• applies probabilities to statistical problems and provides updates 

based on evidence of new data
• does not depend on number of experiments
• parameters are random, data is fixed [6]
• run to get probability of parameter values, given observed data [6]

Comparisons

• Charitable: different tools [8]

• Neutral: reasonable preference [9]

• Spicy: others are wrong [10]
https://xkcd.com/1132/

[7]



Theory
Bayes’ Theorem

• Updates probabilities (degrees of belief) 
after obtaining new data

• Probability of A occurring given that B has 
occurred is equal to the probability that they 
have both occurred, relative to the 
probability that B has occurred [11]

Bayes Theorem: 

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 × 𝑃(𝐴)

𝑃(𝐵)

Bayes Theorem: 

𝑃 ℎ𝑦𝑝 𝑑𝑎𝑡𝑎 =
𝑃 𝑑𝑎𝑡𝑎 ℎ𝑦𝑝 × 𝑃(ℎ𝑦𝑝)

𝑃(𝑑𝑎𝑡𝑎)



Theory Cont.
Parts

Priors 
• belief
• best-guess for how the data is 

distributed
• what is already known

Data
• values from experiment or 

observation

Likelihood
• conditional density of parameters 

given the data [13]

Posterior
• combined insights from the prior 

model and observed data
• iterative process

[12]

[14]



Examples

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A)

P(B)

P(B|A)

What is the probability of a patient having liver disease (A) if they are alcoholic (B)?

Clinical records show that 10% of patients entering have liver disease, 5% are alcoholic, and 7% 
of those with liver disease are diagnosed as alcoholics [15].



Examples

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A) 0.10

P(B) 0.05

P(B|A) 0.07

What is the probability of a patient having liver disease (A) if they are alcoholic (B)?

Clinical records show that 10% of patients entering have liver disease, 5% are alcoholic, and 7% 
of those with liver disease are diagnosed as alcoholics [15].

𝟎. 𝟎𝟕 × 𝟎. 𝟏𝟎

𝟎. 𝟎𝟓
= 𝟎. 𝟏𝟒 = 𝟏𝟒%



Examples

Dangerous fires are rare (1%), but smoke is common (10%) due to cooking and outdoor 
activities.  90% of dangerous fires make smoke [15].

What is the probability of dangerous fire when there is smoke?

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A)

P(B)

P(B|A)



Examples

Dangerous fires are rare (1%), but smoke is common (10%) due to cooking and outdoor 
activities.  90% of dangerous fires make smoke [15].

What is the probability of dangerous fire when there is smoke?

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A) 0.01

P(B) 0.10

P(B|A) 0.90

𝟎. 𝟗𝟎 × 𝟎. 𝟎𝟏

𝟎. 𝟏𝟎
= 𝟎. 𝟎𝟗 = 𝟗%



Examples

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

In four Formula 1 races, Niki won 3 while James won 1.  However, it rained twice, once when 
when James won, once when Niki won [5].

𝑷 𝑩 𝑨 =
𝑷 𝑨 𝑩 × 𝑷(𝑩)

𝑷(𝑨)

What is the probability of James winning the next race (B), given the probability of rain (A)?

P(A)

P(B)

P(A|B)



Examples

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

In four Formula 1 races, Niki won 3 while James won 1.  However, it rained twice, once when 
when James won, once when Niki won [5].

𝑷 𝑩 𝑨 =
𝑷 𝑨 𝑩 × 𝑷(𝑩)

𝑷(𝑨)

What is the probability of James winning the next race (B), given the probability of rain (A)?

P(A) 0.5 (rained at 2/4  
races)

P(B) 0.25 (James won 1/4 
races

P(A|B) 1.00 (rained every 
time James won) 𝟏. 𝟎𝟎 × 𝟎. 𝟐𝟓

𝟎. 𝟓𝟎
= 𝟎. 𝟓𝟎 = 𝟓𝟎%



Examples
There are two boxes.  The first box contains 4 red balls and 2 green balls.  The second box 
contains 4 green balls and 2 red balls.  By design, the probabilities of selecting the first or 
second box are random; 1/3 for the first and 2/3 for the second.  A box is selected at random, 
and a ball is selected at random from it [16].

What is the probability the ball was selected for the first box (A) if the ball is red (B)?

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A)

P(B)

P(B|A)



Examples
There are two boxes.  The first box contains 4 red balls and 2 green balls.  The second box 
contains 4 green balls and 2 red balls.  By design, the probabilities of selecting the first or 
second box are random; 1/3 for the first and 2/3 for the second.  A box is selected at random, 
and a ball is selected at random from it [16].

What is the probability the ball was selected for the first box (A) if the ball is red (B)?

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 × 𝑷(𝑨)

𝑷(𝑩)

P(A) 1/3 (from design)

P(B) (4/6 x 1/3) + (2/6 x 2/3) = 
2/9 + 2/9 = 4/9

P(B|A) 4/6 = 2/3 (from design)

𝟐/𝟑 × 𝟏/𝟑

𝟒/𝟗
= 𝟏/𝟐 = 𝟓𝟎%



Real World Applications
General [17]

• Any application area where there is high heterogeneity or 
noisiness

• Any application where you need a clear understanding of 
your uncertainty

• Applications that require hierarchical models
• Examples: E-commerce, insurance, finance, and healthcare

Bayesian Network [18, 19]
• Probabilistic graphic model
• Natural science: gene regulatory network, medicine, 

biomonitoring, system biology
• Data science: document classification, semantic search, 

spam filter, information retrieval, image processing, turbo 
code

Phylogenetics [20, 21]
• Workhorse is tree reconstruction
• Uses DNA, amino acid, or morphological character 

alignments



Assessment

https://und.qualtrics.com/jfe/form/SV_1OlXzmd3JroFk90

https://und.qualtrics.com/
https://und.qualtrics.com/jfe/form/SV_1OlXzmd3JroFk90


Summary and Conclusion

• Bayesian analysis takes in prior beliefs (hypothesis) and evidence (data) to 
generate posterior beliefs (probability)

• A philosophically and computationally different method of statistics when 
compared to Frequentist methods

• Tune in next time for a more detailed look at Bayesian analysis in Bayesian 
Analysis Module II: Leaves and Trees
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