
UND	Genomics	Core	Bioinformatics	Workshop	
February	23,	2019		

	
Section	1	–	Sequence	Quality	and	Alignment	

In	hands	on	activity,	we’re	going	to	build	on	the	basics	we	learned	yesterday	to	set	up	our	
workspace	and	begin	to	work	with	sequencing	files	and	applications.		We’re	going	to	look	at	a	program	that	
will	help	us	examine	the	quality	of	a	raw	sequence	file.		We	will	also	align	a	sequence	file	to	the	genome	
and	see	what	those	results	look	like.			

	
Notes:		

1. All	the	code	you	need	to	type	into	the	terminal	will	be	in	black	boxes.	
2. Mac	users	can	simply	copy	paste	the	code	into	the	terminal.	
3. Windows	users	can	copy	code	into	the	putty	terminal	by:		

a. Copy	code	using	ctrl	+	C	
b. Paste	into	the	putty	terminal	by	right	clicking	with	your	mouse.	

4. If	you	are	typing	the	commands	into	the	terminal,	type	the	code	as	one	continuous	line.	
5. Due	to	the	large	number	of	people	working	at	the	same	time,	for	the	more	computationally	

extensive	steps-	alignment,	and	transcriptome	assembly,	we	will	have	you	start	the	command,	then	
kill	the	process	using	ctrl	+	C.	We	will	have	output	files	already	generated	for	you	to	examine.	

	
		
Login	to	server	
Login	to	your	assigned	server.	
1.Make	sure	VPN	is	turned	on.		
2.	Windows.	You	will	nee	the	putty	application	to	login.	

a. Username:	workshop.2019		
b. Password:	UNDworkshop!	

2. Macs.	Using	the	terminal	app,		
a. Type:	ssh workshop.2019@buddy.med.und.edu	
b. You	will	be	prompted	for	a	password-	password	is:	UNDworkshop!	As	you’re	typing	the	

password,	the	cursor	won’t	move-	that’s	fine,	then	hit	enter.	
c. If	login	is	successful	the	terminal	will	give	a	message:	

 last login: Tue Feb 19 15:26:49 2019 from 172.27.166.26
 -bash: goto: command not found

Success!	You’re	in!	
	

Set	up	workspace	
First	we	need	to	create	some	folders	to	keep	ourselves	organized:	
	
mkdir FastQC Alignments Trimmed_fastq Assembly Counts

	
Next,	we	need	to	link	some	reference	files	that	we’ll	be	using	later:	
ln -s /local_storage/annotation_db/Mus_musculus/UCSC/mm10/Sequence/newHisat/*.* .
ln -s /local_storage/annotation_db/Mus_musculus/UCSC/mm10/Annotation/Genes/genes.gtf .
ln –s /local_storage/annotation_db/Mus_musculus/UCSC/mm10/Sequence/WholeGenomeFasta/*.fa

	

Today,	we’ll	be	using	paired	end	fastq	files	that	have	been	down	sampled	to	5	million	reads.	For	a	typical	
RNA-Seq	experiment	you	would	need	approximately	40	million	reads	per	sample.		
		
Sequence	Quality	Assessment.	
While	it's	possible	to	look	at	the	first	10	lines	or	so	of	a	fastq	file	using	the	head	command,	it's	impossible	to	
make	sense	of	all	the	information	in	a	fastq	file	just	by	looking	at	it.	To	extract	and	summarize	some	of	the	
information	found	in	the	fastq	file,	we	will	be	using	the	program	FastQC:	
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/	
	
All	of	the	options	for	the	fastqc	program	can	be	found	by	typing:	
	 	
	 fastqc -h
	
To	run	FastQC:	
	
	 fastqc -o FastQC /home/workshop.2019/Files/example_1.fastq.gz

	
This	command	specifies	two	things:	

o 			an	output	directory	"FastQC",	using	to	–o		option	
o a	fastq	file	to	be	processed

	
Note	that	I	didn’t	use	the	–f	option	to	specify	the	file	format.	This	is	because	the	default	value	is	fastq.	It’s	
important	to	be	aware	of	the	default	values	set	for	each	program.	Most	of	the	time,	the	default	values	are	
reasonable,	but	sometimes	they’re	not.	FastQC	produces	a	html	report	that	can	opened	in	a	browser	and	a	
zipped	folder	with	all	of	the	raw	data	used	to	generate	the	report.	The	html	report	is	the	file	you	want	to	
look	at,	but	first	it	needs	to	be	transferred	to	your	local	computer.	
-		
For	windows	users,	use	winscp	to	download	the	fastqc	file	to	your	local	computer.		For	mac	users,	you	can	
use	the	terminal	to	download	the	file.		Open	another	terminal	window	(command	+	N).	Then	the	secure	
copy	command:	
scp
workshop.2019@assigned_server.med.und.edu:/home/workshop.2019/Your_Folde
r/fastqc/* .

This	will	download	the	FastQC	directory	into	your	home	directory.	 	
	
Adapter	Trimming		
There	are	numerous	programs	for	trimming	adapters	from	sequencing	data.	We	will	be	using	trim_galore,	
which	is	a	wrapper	around	the	program	cutadapt.	
	
TrimGalore:	https://www.bioinformatics.babraham.ac.uk/projects/trim_galore	
Cutadapt:	https://cutadapt.readthedocs.io/en/stable/guide.html	
	
	
Again,we	will	look	at	the	options	available	for	trim	galore	and	construct	our	command.	There	are	a	lot	of	
options	for	trim	galore,	and	we	won't	need	to	use	them	all,	here	are	the	ones	we	need	use:	

o Our	data	is	Illumina	1.9+,	use	--phred33	(its	already	default)	
o We	want	to	run	FastQC	after	we're	done	:	--fastqc		

o This	dataset	was	generated	from	illumine,	so	we'll	use	the	--illumina	flag	to	tell	trimGalore	to	
trim	illumina	adapters.	

o Our	data	is	paired-end,	so	we	need	the	the		--paired	option	
o Set	the	amount	of	overlap	between	sequence	and	adapter	,	at	least	3:	--stringency 3	
o Specify	our	output	directory	-o Trimmed_fastq
o Trim	low	quality	bases	:	-q 20	(already	default)	

Let’s	put	together	our	command:	
	
trim_galore --paired --fastqc --illumina --stringency 3 -o Trimmed_fastq
/home/workshop.2019/Files/example_1.fastq.gz /home/workshop.2019/Files/example_2.fastq.gz

	
TrimGalore	will	produce	a	number	of	files:	

o A	trimming	report	for	each	input	file	with	the	command	line	parameters	used	and	how	many	reads	
had	adapters.		

o Trimmed	fastq	files	
o FastQC	report	for	each	trimmed	file.	

	
For	paired	end	data	like	we	have,	TrimGalore	will	also	produced	two	"validated"	fastq	files,	which	means	
that	reads	in	the	R1	and	R2	files	are	the	same	order,	which	is	important	for	downstream	applications	like	
alignment.		
	
	
Alignment	https://ccb.jhu.edu/software/hisat2/index.shtml	
It’s	finally	time	to	align	our	reads	to	the	genome!		We	will	be	using	hisat2	today.		Hisat2	is	a	part	of	the		
newer	‘Tuxedo	Suite’	developed	by	the	Center	for	Computational	Biology	at	John’s	Hopkins	University	This	
suite	is	an	entire	pipeline	of	tools	for	analyzing	RNAseq	data.		
			
We	will	use	one	unique	file	type	for	alignment,	the	hisat2	index.	You	can	think	of	the	index	as	a	compressed	
version	of	the	genome.		For	more	information	on	the	computational	details	on	these	files,	consult	the	
hisat2	website	https://ccb.jhu.edu/software/hisat2/manual.shtml#the-hisat2-build-indexer	
	
The	basic	structure	of	the	alignment	command	for	paired	end	reads	is:	
	
hisat2 <options> -x <index> -1 <read1.fq> -2 <read2.fq>
		
I	encourage	you	to	look	at	all	the	options	with:	hisat2 –h
Here	are	some	important	options	to	be	aware	of:	

o --dta This	will	add	some	information	that	will	be	used		in	the	transcript	assembly	
o -x basename	of	the	hisat2	index	for	the	reference	genome.		
o --rna-strandness Specify	if	your	library	is	strand-specific.	

	

hisat2 --dta -x genome -1 /home/workshop.2019/Files/example_1_val_1.fq.gz -2
/home/workshop.2019/Files/example_2_val_2.fq.gz | samtools view -b - >
Alignments/example.bam

I’ve	also	used	the	pipe	character	(|),	which	allows	us	to	string	two	commands	together.	Here,	we’re	adding	
the	samtools view after	the	alignment	command	to	convert	the	SAM	file	into	a	more	compact	BAM	
file.		
	
Kill	the	alignment	process	with:	
	
	 Ctrl + C
Hisat2	will	produce	an	alignment	file,	and	some	alignment	statistics.	Copy	the	files	into	your	folder,	and	
have	a	look!	
	
cp /home/workshop.2019/Files/hisat_out.txt .
cp /home/workshop.2019/Files/example.bam .

	
Inspecting	Alignment	files		
Samtools	http://samtools.sourceforge.net/	is	an	extremely	useful	collection	of	utilities	for	manipulating	
alignments	in	the	SAM	and	BAM	format	including	sorting,	merging,	and	indexing.		Today,	we’re	going	to	use	
it	to	look	at	the	alignment	file	produced	by	hisat2,	and	also	to	sort	and	index	the	alignment	file.	
	
The	syntax	for	samtools	commands	has	one	extra	piece.		You	not	only	have	to	call	the	tool,	you	will	also	
have	to	tell	it	what	utility	you	would	like	to	use.		We	are	going	to	be	using	the	view,	sort,	and	index	utilities	
today:	

	
samtools <utility> -options <file>

	
Samtools	allows	us	to	easily	work	with	and	inspect	alignment	files	in	BAM	format.		Take	a	look	at	the	help	
page	for	the	view	utility(samtools view –h).		There	are	many	different	things	you	can	do	with	this	
utility,	but	the	easiest	way	to	think	about	it	is	just	like	a	fancy	cat.		You	are	able	to	read	binary	input	or	
output	binary	files	from	text.			
	
Let’s	take	a	look	at	a	couple	of	parts	of	the	alignment	file.		The	following	command	will	print	the	first	25	
lines	of	the	alignment	file:		

	
samtools view example.bam | head -n 25

Finally,	sort	and	index	your	bam	file:

	
samtools sort -o Alignments/example_sorted.bam example.bam

samtools index Alignments/example_sorted.bam

	
There	are	two	ways	of	sorting	BAM	files:	by	read	coordinate,	which	is	what	we’ve	done	here,	or	by	
sequence	name.	Indexing	your	BAM	files	will	allow	certain	programs	to	read	your	BAM	file	quicker.	After	
you’ve	sorted	your	bam	file,	you	can	remove	the	unsorted	bam-	they	contain	the	same	information	only	in	
a	different	order.			

	
	
Section	3	–	Assembly	and	Counting	
	 	

This	section	of	the	exercise	will	finally	put	all	of	this	data	into	a	format	that	is	digestible	by	a	
human.		We	will	be	summing	up	the	hits	with	a	couple	different	programs	and	generating	data	tables	that	
can	be	mined	for	real	results.			
	
Counting	with	featureCounts	http://bioinf.wehi.edu.au/featureCounts	
We	will	be		using	the	program	featureCounts	to	count	reads	aligning	each	gene.	How	does	featureCounts	
do	this?		First,	print	the	first	few	lines	of	your	gtf	file.	
			
		 head genes.gtf

	
featureCounts	is	going	to	take	every	line	labeled	exon	in	the	third	column	of	this	gtf	file	(called	the	feature)	
and	count	the	number	of	reads	aligning	within	the	interval	defined	by	the	4th	and	5th	columns.		It	is	then	
going	to	match	the	total	of	all	the	hits	within	those	features	to	the	gene_id	(called	the	metafeature)	pair	
listed	in	the	9th	column.		This	will	output	a	text	file	with	a	total	number	of	hits	matching	to	each	gene.	
		
The	‘exon’	feature	and	‘gene_id’	attribute	can	be	changed	depending	on	the	type	of	analysis.		For	instance,	
you	might	want	to	look	at	isoforms	using	the	‘transcript_id’	attribute.			
	
Here’s	the	command	we’ll	be	using:	

	
featureCounts -p -a genes.gtf -o counts.txt \
Alignments/example_sorted.bam 2> featureCounts_stderr.txt

Important	options:	

o -p	this	will	count	each	fragment,	instead	of	counting	counting	both	ends	of	the	fragment	
separately	

o -s		strandness	the	default	setting	is	0,	for	unstranded	data,	which	is	what	we’ll	be	using	today,	but	
this	option	needs	to	be	changed	depending	on	the	library	prep	kit	used	to	generate	your	libraries	

o -a	the	annotation	file	(genes.gtf)	
o -M	this	option	will	count	multimapping	reads,	the	default	is	to	not	count	them.	
o –T This	options	species	the	number	of	threads	to	use.

	
	
This	program	should	only	take	a	few	minutes	to	run.		When	it’s	finished,	take	a	few	minutes	to	look	through	
the	results.		Can	you	use	the	command	grep	to	identify	your	favorite	gene?		How	about	a	housekeeping	
gene	like	ACTB?	
	
Counting	and	Assembly	with	Cufflinks		http://cole-trapnell-lab.github.io/cufflinks/	
Cufflinks	s	a	program	that	assembles	a	transcriptome	from	RNAseq	data	and	quantifies	their	expression.	
Again,	we’ll	look	at	the	options	for	cufflinks	using:	
	 	

cufflinks –h

There	a	quite	few	options	for	cufflinks.	Here	are	some	that	are	important:	

o –g	to	supply	cufflinks	with	annotation	
o –u	tells	cufflinks	to	“rescue”	multimapping	reads	
o –-library-type

	

	
cufflinks -o example \
 -g genes.gtf \
 -b genome.fa \
 -u \
 --library-type fr-unstranded \
 Alignments/example_sorted.bam 2> cufflinks_stderr.txt

	
After	running	the	command,	kill	the	process	with:	
Ctrl + C

	
Copy	the	output	files	in	to	your	home	directory:	
cp -r /home/workshop.2019/Files/cufflinks_results/ .

	
Cufflinks	output	consists	of	two	types	of	files,	count	files	and	an	annotation	file.		The	count	files	are	labeled	
fpkm_tracking.		There	are	two	types,	genes	and	isoforms.		They	are	made	using	different	feature	ids	pulled	
from	the	gtf,	gene_id	and	transcript_id,	respectively.		These	files	are	primarily	for	reporting	the	FPKM	
values	of	each	gene	or	transcript	to	be	used	in	differential	analysis.		Although	there	are	several	fields	
containing	identification	information,	(http://www.broadinstitute.org/cancer/software/genepattern/file-
formats-guide#FPKM_tracking)	the	column	labeled	FPKM	reports	the	actual	counted	value.		The	
FPKM_conf_lo	and	FPKM_conf_hi	columns	report	the	upper	and	lower	bounds	of	the	95%	confidence	
interval	of	the	measurement.			
	
The	transcripts.gtf	file	contains	all	of	the	information	in	the	counting	files	collected	in	gtf	format.		This	
represents	a	full	annotation,	complete	with	the	quantitative	fpkm	information,	of	the	transcriptome	
contained	in	the	analyzed	sample.		Take	a	look	at	this	file	and	the	genes.gtf	annotation	file	in	the	directory	
above.		What’s	different?	
	

