Active Learning Applied

Simple Strategies for Complex Content

An Evidence-Based Teaching Group Presentation

February 6, 2018

Presentation and handouts available at med.und.edu/education-resources (See Evidence-Based Teaching under Teaching and Learning Resources)

Introductions

- Richard Van Eck
 - Associate Dean for Teaching & Learning
- Adrienne Salentiny
 - Instructional Design
- Devon Olson
 - Research & Education Librarian

Evidence for AL

- NSF & DoE SCALE UP (Beichner et al., 2007)
 - 16,000 students over 5 years
 - Well-designed AL science courses vs. non-AL
 - Rigorous, validated measures of learning
- Results
 - Higher scores on national tests, end-of-course exams, and measures of conceptual knowledge
 - 50% lower failure rates overall and for at-risk students

(More) Evidence for AL

- Three Meta-Analyses Over 15 Years
 - Moderate-to-large effect sizes across the board
 - Achievement, persistence, application of knowledge, exam scores, concept inventories
 - Smallest effect size observed would move a student from the 50th percentile to the 70th (from failing to passing)
- 2014 Meta-Analysis
 - Student exam and concept inventory scores increased by 0.47 SDs under AL
 - Average exam scores 6% higher in active learning
 - Students in traditional lecturing 1.5 times more likely to fail

What's Your Problem?

- Complexity
 - Too much information/information is too complex
- Transfer
 - They can answer questions but can't apply knowledge
- Processes
 - They don't understand what it looks like in action

What's Your Problem?

- Systems/Dynamic Content
 - They don't understand how different components influence and interact with each other
- Definitions
 - They memorize the definitions but can't use them
- Synthesis
 - They can't put everything together into a meaningful whole

Your Turn

• Anyone have an example of any of these?

AL Strategies: An Overview

- Handout provides more detail
- We'll cover two in more depth, today
- Ask questions any time!

- 10-2
 - What
 - Pause for two minutes every 10 minutes
 - Why
 - Maximum amount of time we can attend meaningfully
 - One way to "Chunk & Reset" (see handout)

- Q & A
 - What
 - Ask questions, promote question-asking
 - Why
 - The more questions students ask, the more they learn*
 - Research shows average student asks 1.5 questions per hour**
 - Students learn as much from someone ELSE asking a question as from formulating that question themselves***
 - Ungraded quizzes at beginning and end of lectures raises letter grades one full letter****

*Dillon, T.J. (1988). Questioning and teaching: A manual of practice. New York: Teachers College Press; Van der Meij, H (1988). Constraints on question asking in classrooms. Journal of Educational Psychology, 80, 401-405.

**Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal, 31, 104-137.

***Otero, J., & Graesser, A. C.. (2001). PREG: Elements of a Model of Question Asking. Cognition and Instruction, 19(2), 143–175. Retrieved from http://www.jstor.org/stable/3233815

****McDaniel, M. A., Agarwal, P. K., Huelser, B. J., McDermott, K. B., & Roediger, H. L. (2011). Test-enhanced learning in a middle school science classroom: The effects of quiz frequency and placement. *Journal of Educational Psychology*, 103, 399-414.; Roediger, H. L., Agarwal, P. K., McDaniel, M. A., & McDermott, K. B. (2011). Test-enhanced learning in the classroom: Long-term improvements from quizzing. *Journal of Experimental Psychology: Applied*, 17, 382-395.

- Cases
 - What
 - Create a case that requires/integrates factual knowledge
 - Why
 - Helps build mental model of applied concepts
 - Integrates multiple concepts, processes, components into meaningful whole

- Roleplays
 - What
 - A case that requires student input and demonstration of concepts
 - Why
 - Helps build dynamic and applied knowledge rather than inert memorization
 - Addresses sense of false confidence

- Fishbowl
 - What
 - You and/or students model a case, process, roleplay while class observes
 - You interrupt at key points to ask questions, make observations, elicit responses, provide feedback
 - Why
 - May not have sufficient skills sets in each group to do
 - Time constraints may not allow all to do
 - Need a model to set the tone
 - You cannot be present in each group to help provide feedback
 - Vicarious learning can be almost as effective

- Jigsaw
 - What
 - Divide students into groups to work on
 - A) same problem (generate multiple solutions to show diversity)
 - B) different aspects of the same problem (deep dive on components; synthesis across groups later)
 - Why
 - Distributes expertise and support/feedback (collective intelligence)
 - Allows deep dives into complex concepts or systems (divide and conquer)

Your Turn

- Has anyone used any of these strategies?
 - Jigsaw
 - Fishbowl
 - Cases
 - Roleplays
 - 10-2
 - Q & A

Fishbowl Example

• Accommodation in the Classroom

Design a Fishbowl Example

- Break into groups (Jigsaw)
- Identify one real instructional problem suitable for fishbowl (2 minutes)
- Generate a fishbowl strategy and plan to solve it (5 minutes)

Setting the Stage for AL

- Communicate
 - Share rationale
 - Set expectations
 - Get feedback
- Start small
 - Make the first one easy
- Build for success
 - Make the first one worth something
- Hold them accountable for preparation (e.g., iRAT/gRAT)

Conclusion

- Pick your battles
 - Don't redesign everything—focus on things you CAN'T teach with existing methods
- Don't expect them to love you
- Don't underestimate the time or effort initially
- Don't expect it to work exactly as you want until you've done it three times