Sample Size Calculation with GPower

Dr. Mark Williamson, Statistician Biostatistics, Epidemiology, and Research Design Core DaCCoTA

Purpose

- This Module was created to provide instruction and examples on sample size calculations for a variety of statistical tests on behalf of BERDC
- The software used is GPower, the premiere free software for sample size calculation that can be used in Mac or Windows

Background

- The Biostatistics, Epidemiology, and Research Design Core (BERDC) is a component of the DaCCoTA program
- Dakota Cancer Collaborative on Translational Activity has as its goal to bring together researchers and clinicians with diverse experience from across the region to develop unique and innovative means of combating cancer in North and South Dakota
- If you use this Module for research, please reference the DaCCoTA project

Daccotá Dakota cancer collaborative ON TRANSLATIONAL ACTIVITY

The Why of Sample Size Calculation

• In designing an experiment, a key question is:

How many animals/subjects do I need for my experiment?

- Too small of a sample size can under-detect the effect of interest in your experiment
- Too large of a sample size may lead to unnecessary wasting of resources and animals
- ° Like Goldilocks, we want our sample size to be 'just right'
- The answer: Sample Size Calculation
- **Goal:** We strive to have enough samples to reasonably detect an effect if it really is there without wasting limited resources on too many samples.

https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/The_Three_Bears_-_Project_Gutenberg_eText_17034.jpg/1200px-The_Three_Bears_-_Project_Gutenberg_eText_17034.jpg

Key Bits of Sample Size Calculation

Effect size: magnitude of the effect under the alternative hypothesis

• The larger the effect size, the easier it is to detect an effect and require fewer samples

Power: probability of correctly rejecting the null hypothesis if it is false

- AKA, probability of detecting a true difference when it exists
- Power = $1-\beta$, where β is the probability of a Type II error (false negative)
- The higher the power, the more likely it is to detect an effect if it is present and the more samples needed
- Standard setting for power is 0.80

Significance level (α): probability of falsely rejecting the null hypothesis even though it is true

- AKA, probability of a Type I error (false positive)
- The lower the significance level, the more likely it is to avoid a false positive and the more samples needed
- Standard setting for **a** is 0.05
- Given those three bits, and other information based on the specific design, you can calculate sample size for most statistical tests

Effect Size in detail

- While *Power* and *Significance level* are usually set irrespective of the data, the effect size is a property of the sample data
- It is essentially a function of the difference between the means of the null and alternative hypotheses over the variation (standard deviation) in the data

How to estimate Effect Size:

- A. Use background information in the form of preliminary/trial data to get means and variation, then calculate effect size directly
- B. Use background information in the form of similar studies to get means and variation, then calculate effect size directly
- C. With no prior information, make an estimated guess on the effect size expected, or use an effect size that corresponds to the size of the effect
 - Broad effect sizes categories are small, medium, and large
 - Different statistical tests will have different values of effect size for each category

Statistical Rules of the Game

Here are a few pieces of terminology to refresh yourself with before embarking on calculating sample size:

- Null Hypothesis (H0): default or 'boring' state; your statistical test is run to either Reject or Fail to Reject the Null
- Alternative Hypothesis (H1): alternative state; usually what your experiment is interested in retaining over the Null
- **One-Tailed Test:** looking for a deviation from the H0 in only one direction (ex: *Is variable X larger than 0?*)
- **Two-tailed Test**: looking for a deviation from the H0 in either direction (ex: *Is variable Y different from 0?*)
- **Parametric data:** approximately fits a normal distribution; needed for many statistical tests
- Non-parametric data: does not fit a normal distribution; alternative and less powerful tests available
- Paired (dependent) data: categories are related to one another (often result of before/after situations)
- **Un-paired (independent) data**: categories are not related to one another
- **Dependent Variable**: Depends on other variables; the variable the experimenter cares about; also known as the Y or response variable
- Independent Variable: Does not depend on other variables; usually set by the experimenter; also known as the X or predictor variable

Using GPower: Graphics

- Central and noncentral distributions
 - Shows the distribution of the null hypothesis (red) and the alternative (blue)
 - Also has the critical values

• X-Y plot for a range of values

 Can generate plots of one of the parameters α, effect size, power and sample size, depending on a range of values of the remaining parameters.

Taxonomy of Designs Covered

• 1 Numerical

- Parametric: One mean T-test
- Non-parametric: One mean Wilcoxon Test

<u>1 Numerical + 1 Categorical</u>

- Categorical groups=2:
 - Independent (non-paired):
 - Parametric: Two means T-test
 - Non-parametric: Mann-Whitney Test
 - Dependent (paired):
 - Parametric: **Paired T-test**
 - Non-Parametric: Paired Wilcoxon Test
- Categorical groups>2:
 - Independent (non-paired):
 - Parametric: One-way ANOVA
 - Non-Parametric: Kruskal Wallace Test
 - Dependent (paired):
 - Parametric: Repeated Measures ANOVA
 - Non-Parametric: Friedman Test

- 1 Numerical + 2⁺ Categorical • Single Category of Interest: Multi-Way ANOVA **Blocked ANOVA** Nested ANOVA **Split-Plot ANOVA** • Multiple Categories of Interest: Multi-Way ANOVA **<u>1 Categorical: Proportion Test</u>** • <u>1 Categorical + 1 Categorical</u> • Independent (non-paired): Fisher's Exact Test • Dependent (paired): McNamar's Test • <u>1 Categorical + 1⁺ Categorical</u> ◦ Categorical groups≥2: Goodness-of-Fit Test 1 Numerical + 1 Numerical • Parametric: Simple Linear Regression • Non-parametric: Spearman Rank-order Regression 1 Numerical + 2⁺ Numerical • Parametric: Multiple Linear Regression • Non-Parametric: Logistic and Poisson Regression
- <u>1 Numerical + 1⁺ Numerical + 1⁺ Categorical:</u>
 - Only 1 Category of Interest: ANCOVA
 - Multiple Categories of Interest: { **GLMM**}

0

0

#	Name of Test	Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	One Mean T-test	1	0	0	0	Yes	N/A
2	One Mean Wilcoxon Test	1	0	0	0	No	N/A
3	Two Means T-test	1	1	2	1	Yes	No
4	Mann-Whitney Test	1	1	2	1	No	No
5	Paired T-test	1	1	2	1	Yes	Yes
6	Paired Wilcoxon Test	1	1	2	1	No	Yes
7	One-way ANOVA	1	1	>2	1	Yes	No
8	Kruskal Wallace Test	1	1	>2	1	No	No
9	Repeated Measures ANOVA	1	1	>2	1	Yes	Yes
10	Friedman Test	1	1	>2	1	No	Yes
11	Multi-way ANOVA (1 Category of interest)	1	≥2	≥2	1	Yes	No
12	Multi-way ANOVA (>1 Category of interest)	1	≥2	≥2	>1	Yes	No
13	Proportions Test	0	1	2	1	N/A	N/A
14	Fisher's Exact Test	0	2	2	2	N/A	No
15	McNemar's Test	0	2	2	2	N/A	Yes
16	Goodness-of-Fit Test	0	≥1	≥2	1	N/A	No
17	Simple Linear Regression	2	0	N/A	N/A	Yes	N/A
18	Multiple Linear Regression	>2	0	N/A	N/A	Yes	N/A
19	Pearson's Correlation	2	1	N/A	N/A	Yes	No
20	Non-Parametric Regression (Logistic)	≥2	0	N/A	N/A	No	N/A
21	Non-Parametric Regression (Poisson)	≥2	0	N/A	N/A	No	N/A
22	ANCOVA	>1	≥1	>1	≥1	Yes	N/A

Format for each test

Overview Example {Parameter Calculations} Practice Answers

One Mean T-Test: Overview

Description: this tests if a sample mean is any different from a set value for a normally distributed variable.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	0	0	0	Yes	N/A

Example:

- Is the average body temperature of college students any different from 98.6°F?
- H₀=98.6°F, H₁≠98.6°F

<u>GPower</u>:

- Select **t tests** from Test family
- Select Means: difference from constant (one sample case) from Statistical test
- Select **A priori** from Type of power analysis
- Background Info:
 - a) Select **One** or **Two** from the Tail(s), depending on type
 - b) Enter 0.05 in α err prob box or a specific α you want for your study
 - c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - d) Hit Determine =>
 - e) Enter in the Mean H0, Mean HI, and SD, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - f) Hit Calculate on the main window
 - g) Find **Total sample size** in the Output Parameters
- Naïve:
 - a) Run a-c as above
 - b) Enter Effect size guess in the **Effect size d** box (small=0.2, medium=0.5, large=0.8)
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

One Mean T-Test: Example

Is the average body temperature of college students any different from 98.6°F?

- H₀=98.6°F, H₁≠98.6°F
- From a trial study, you found the mean temperature to be 98.2° with a standard deviation of 0.733.
- Selected Two-tailed, because we were asking if temp differed, not whether it was simply lower or higher

Results:

• Total number of samples needed is 29.

e Edit View Tests Calculator Help Central and noncentral distributions Protocol of (21] <i>Wednesday, January 15, 2020 09:40:1</i>		<u></u>	
t tests – Means: Difference from constant (one Analysis: A priori: Compute required samp Input: Tail(s) Effect size d α err prob Power (1-β err prob)	sample case) e size = Two = 0.5457026 = 0.05 = 0.80	Clear	Dropdown menu items you specified Values you entered
Output: Noncentrality parameter δ Critical t Df Total sample size Actual power	= 2.9386984 = 2.0484071 = 28 = 29 = 0.8096578	Save V Print	Value(s) GPower calculated Sample size calculation
Fest family Statistical test t tests Means: Difference from cor Type of power analysis A priori: Compute required sample size – given nput Parameters Tail(s) Two Determine => Effect size d 0.54570	 α, power, and effect size Output Parameters Noncentrality parameter δ Critical t 	2.9386984 2.0484071	
α err prob 0.	Df Total sample size Actual power	28 29 0.8096578	Mean H0 98.6 Mean H1 98.2 SD σ 0.733 Calculate Effect size d 0.5457026 Calculate and transfer to main window 0

One Mean T-Test: Practice

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):

- 1. You are interested in determining if the average income of college freshman is less than \$20,000. You collect trial data and find that the mean income was \$14,500 (SD=6000).
- 2. You are interested in determining if the average sleep time change in a year for college freshman is different from zero. You collect the following data of sleep change (in hours).

Sleep Change	-0.55	0.16	2.6	0.65	-0.23	0.21	-4.3	2	-1.7	1.9
--------------	-------	------	-----	------	-------	------	------	---	------	-----

3. You are interested in determining if the average weight change in a year for college freshman is greater than zero.

One Mean T-Test: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average income of college freshman is less than \$20,000. You collect trial data and find that the mean income was \$14,500 (SD=6000).
 - Found an effect size of 0.91, then used a one-tailed test to get a total sample size of 9
- 2. You are interested in determining if the average sleep time change in a year for college freshman is different from zero. You collect the following data of sleep change (in hours).

Sleep Change	-0.55	0.16	-2.6	0.65	-0.23	0.21	-4.3	2	-1.7	1.9	
--------------	-------	------	------	------	-------	------	------	---	------	-----	--

Mean H0=0, Mean H1=-0.446 with SD=1.96; found an effect size of 0.228 then used a two-tailed test to get a total sample size of 154

- 3. You are interested in determining if the average weight change in a year for college freshman is greater than zero.
 - Guessed a large effect size (0.8), then used a one-tailed test to get a total sample size of 12

One Mean Wilcoxon: Overview

Description: this tests if a sample mean is any different from a set value for a non-normally distributed variable

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	0	0	0	No	N/A

Example:

• Is the average number of children in Grand Forks families greater than 1?

• $H_0=1$ child, $H_1>1$ child

<u>GPower</u>:

- Select **t tests** from Test family
- Select Means: Wilcoxon signed-rank test (one sample case) from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Select **One** or **Two** from the Tail(s), depending on type
 - b) Select Parent Distribution (**Laplace, Logistic,** or **min ARE**) depending on variable (min ARE is good default if you don't know for sure)
 - c) Enter 0.05 in α err prob box or a specific α you want for your study
 - d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - e) Hit Determine =>
 - f) Enter in the Mean H0, Mean HI, and SD, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - g) Hit Calculate on the main window
 - h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run a-d as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters

One Mean Wilcoxon: Example

Is the average number of children in Grand Forks families greater than 1?

- $H_0=1$ child, $H_1>1$ child
- You have no background information and you don't think it is normally distributed
- Default distribution: for non-normal, use min ARE – weakest, but least assumptions
- Try looking at a **large** effect
- Selected One-tailed, because we only cared if the number is greater than the null (1 child)

Results:

• Total number of samples needed is 13.

 Dropdown menu items you specified

 Values you entered

 Value(s) GPower calculated

 Sample size calculation

One Mean Wilcoxon: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average number of insurance claims for Grand Forks families different from 3. You collect trial data and find that the claim number was 2.8 (SD=0.53, with a Laplace distribution).
- 2. You are interested in determining if the average number of pets in Grand Forks families is greater than 1. You collect the following trial data for pet number.

 Pet Number
 1
 1
 3
 2
 1
 0
 0
 0
 4

3. You are interested in determining if the average number of yearly trips to the emergency room for Grand Forks families is different from 5?

One Mean Wilcoxon: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average number of insurance claims for Grand Forks families different from 3. You collect trial data and find that the claim number was 2.8 (SD=0.53, with a Laplace distribution).
 - Found an effect size of 0.38, then used a two-tailed test with Laplace distribution to get a total sample size of 39
- 2. You are interested in determining if the average number of pets in Grand Forks families is greater than 1. You collect the following trial data for pet number.

Pet Number	1	1	1	3	2	1	0	0	0	4
------------	---	---	---	---	---	---	---	---	---	---

- Mean H0=1, Mean H1=1.3 with SD=1.34;
- Found an effect size of 0.224
- Because I didn't know the distribution, went conservatively with min ARE, then used a one-tailed test to get a total sample size of 145
- 3. You are interested in determining if the average number of yearly trips to the emergency room for Grand Forks families is different from 5?
 - Guessed a medium effect (0.5) and because I didn't know the distribution went conservatively with min ARE, then used a two-tailed test to get a total sample size of 39

Two Means T-Test: Overview

Description: this tests if a mean from one group is different from the mean of another group for a normally distributed variable. AKA, testing to see if the difference in means is different from zero.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	2	1	Yes	No

Example:

• Is the average body temperature higher in men than in women?

• H₀=0°F, H₁>0°F

GPower:

- Select **t tests** from Test family
- Select Means: Difference between two independent means (two groups) from Statistical test
- Select A priori from Type of power analysis

• Background Info:

- a) Select **One** or **Two** from the Tail(s), depending on type
- b) Enter 0.05 in α err prob box or a specific α you want for your study
- c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
- d) Enter 1.00 in the **Allocation ratio N2/N1** box unless your group sizes are not equal, then enter the ratio
- e) Hit Determine =>
- f) Enter in the Mean and SD for each group, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
- g) Hit Calculate on the main window
- h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run a-d as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Two Means T-test : Example

Is the average body temperature higher in men than in women?

- From a trial study, you found the mean temperature to be 98.1° for men with a standard deviation (SD) of 0.699 and 98.4 ° for women with a SD of 0.743.
- Selected one-tailed, because we only cared to test if men's temp was higher than women's, not lower
- Group 1 is men, group 2 is women

Results:

• Need a sample size of 73 per gender, for a total of 146.

G*Power 3.1.9.4		- 🗆 X	
ile Edit View Tests Calculator Help Central and noncentral distributions Protocol of po	wer analyses		
[25] Wednesday, January 15, 2020 10:25:05 t tests - Means: Difference between two independer Analysis: A priori: Compute required sample siz Input: Tail(s) = Effect size d = \u03c4 or prob = Power (1-\u03c4 err prob) = Allocation ratio N2/N1 = Output: Noncentrality parameter δ = Df =	nt means (two groups) e One 0.4158952 0.05 0.80 1 2.5126404 1.6555042 144	Clear Save	 Dropdown menu items you specified Values you entered Value(s) GPower calculated Sample size calculation
Sample size group 1 = Sample size group 2 = Total sample size =		✓ Print	
Test family Statistical test t tests V Means: Difference between two i Type of power analysis A priori: Compute required sample size – given α, pc	ndependent means (two groups) wer, and effect size	~	O n1 != n2 Mean group 1 0
Input Parameters Tail(s) One	Output Parameters Noncentrality parameter δ	2.5126404	Mean group 2 1 SD or within each group 0.5
Determine => Effect size d 0.4158952 α err prob 0.05	Critical t	1.6555042	• n1 = n2 •
Power (1-β err prob) 0.80 Allocation ratio N2/N1 1	Sample size group 1	73	Mean group 1 98.1 Mean group 2 98.4
	Total sample size	146	SD σ group 1 0.699 SD σ group 2 0.743
			Calculate Effect size d 0.4158952 Calculate and transfer to main window Close
	X-Y plot for a range of values	Calculate	

Two Means T-Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- You are interested in determining if the average daily caloric intake different between men and women. You collected trial data and found the average caloric intake for 10 males to be 2350.2 (SD=258), 5 while females had intake of 1872.4 (SD=420).
- 2. You are interested in determining if the average protein level in blood different between men and women. You collected the following trial data on protein level (grams/deciliter).

Male Protein	1.8	5.8	7.1	4.6	5.5	2.4	8.3	1.2
Female Protein	9.5	2.6	3.7	4.7	6.4	8.4	3.1	1.4

3. You are interested in determining if the average glucose level in blood is lower in men than women.

Two Means T-Test: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average daily caloric intake different between men and women. You collected trial data and found the average caloric intake for 10 males to be 2350.2 (SD=258), while 5 females had intake of 1872.4 (SD=420).
 - Found an effect size of 1.37, then used a two-tailed test with Allocation Ratio of 0.5 (5 women/10 men) to get a total sample size of 22 (15 men, 7 women)
- 2. You are interested in determining if the average protein level in blood different between men and women. You collected the following trial data on protein level (grams/deciliter).

Male Protein	1.8	5.8	7.1	4.6	5.5	2.4	8.3	1.2
Female Protein	9.5	2.6	3.7	4.7	6.4	8.4	3.1	1.4

• Mean group 1 (men)=4.5875 with SD=2.575, mean group 2 (women)=4.975 with SD=2.875

- Found an effect size of 0.142, then used a two-tailed test with Allocation Ratio of 1.0 (equal group sizes) to get a total sample size of 1560 (780 each for men and women)
- 1. You are interested in determining if the average glucose level in blood is lower in men than women in a predominately female college.
 - Guessed a small effect (0.2), then used a two-tailed test with Allocation Ratio of 3.0 (3 women: 1 man) to get a total sample size of 826 (207 men, 619 women)

Mann-Whitney Test: Overview

Description: this tests if a mean from one group is different from the mean of another group for a non-normally distributed variable. AKA, testing to see if the difference in means is different from zero.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	2	1	No	No

Example:

- Does the average number of snacks per day for individuals on a diet differ between young and old persons?
- $H_0=0$ difference in snack number, $H_1\neq 0$ difference in snack number

<u>GPower</u>:

- Select **t tests** from Test family
- Select Means: Wilcoxon-Mann-Whitney test (two groups) from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Select **One** or **Two** from the Tail(s), depending on type
 - b) Select Parent Distribution (**Laplace, Logistic,** or **min ARE**) depending on variable (min ARE is good default if you don't know for sure)
 - c) Enter 0.05 in α err prob box or a specific α you want for your study
 - d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - e) Enter 1.00 in the Allocation ratio N2/N1 box unless your group sizes are not equal, then enter the ratio
 - f) Hit Determine =>
 - g) Enter in the Mean and SD for each group, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - h) Hit Calculate on the main window
 - i) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run a-e as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters

Mann-Whitney Test: Example

Does the average number of snacks per day for individuals on a diet differ between young and old persons?

- $H_0=0$ difference in snack number, $H_1\neq 0$ difference in snack number
- You have no background information and you think it might be a small effect (0.20)
- Selected two-tailed, because we only care if there is a difference in the two groups

Hovering over the **Effect size d** box will show a bubble of size conventions

Results:

Need a sample size of 456 for each age for a total of 912.

X-Y plot for a range of values

Calculate

Options

Mann-Whitney Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average number of walks per week for individuals on a diet is lower in younger people than older. You collected trial data and found mean walk number for young dieters to be 1.4 (SD=0.18) and 2.5 for older (SD=0.47).
- 2. You are interested in determining if the number of meals per day for individuals on a diet is higher in younger people than older. You collected trial data on meals per day.

Young meals	1	2	2	3	3	3	3	4
Older meals	1	1	1	2	2	2	3	3

3. You are interested in determining if the average number of weight loss websites visited per day for individuals on a diet is different in younger people than older.

Mann-Whitney Test: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if the average number of walks per week for individuals on a diet is lower in younger people than older. You collected trial data and found mean walk number for young dieters to be 1.4 (SD=0.18) and 2.5 for older (SD=0.47).
 - Found an effect size of 3.09, then used a one-tailed test with a min ARE distribution and Allocation Ratio of 1.0 to get a total sample size of 6 (3 each for young and old)
- 2. You are interested in determining if the number of meals per day for individuals on a diet is higher in younger people than older. You collected trial data on meals per day

Young meals	1	2	2	3	3	3	3	4
Older meals	1	1	1	2	2	2	3	3

- Mean group 1 (older)=1.875 with SD=0.834, mean group 2 (younger)=2.625 with SD=0.916
- Found an effect size of 0.53, then used a one-tailed test with a Logistic distribution and Allocation Ratio of 1.0 to get a total sample size of 82 (41 each for young and old)
- 3. You are interested in determining if the average number of weight loss websites visited per day for individuals on a diet is different in younger people than older.
 - Guessed a medium effect (0.5) and Logistic Regression, then used a two-tailed test and Allocation Ratio of 1.0 to get a total sample size of 118 (59 each for young and old)

Paired T-test: Overview

Description: this tests if a mean from one group is different from the mean of another group, where the groups are dependent (not independent) for a normally distributed variable. Pairing can be leaves on same branch, siblings, the same individual before and after a trial, etc.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	2	1	Yes	Yes

Example:

- Is heart rate higher in patients after a run compared to before a run?
- \circ H₀=0 bpm, H₁>0 bpm

<u>GPower</u>:

- Select t tests from Test family
- Select Means: Difference between two dependent means (matched) from Statistical test
- Select **A priori** from Type of power analysis
- Background Info:
 - a) Select **One** or **Two** from the Tail(s), depending on type
 - b) Enter 0.05 in α err prob box or a specific α you want for your study
 - c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - d) Hit Determine =>
 - e) Enter in the Mean and SD for each group, as well as the **Correlation between groups**, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - f) Hit Calculate on the main window
 - g) Find **Total sample size** in the Output Parameters
- Naïve:
 - a) Run a-c as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Paired T-test: Example

Is heart rate higher in patients after a run compared to before a run?

- $H_0=0$ bpm, $H_1>0$ bpm
- From a trial study, you found the mean beats per minute (bpm) before the run to be 86.7 with SD=11.28 and 144.7 with SD=29.12 after the run. The correlation between measurements before and after is 0.34.
- Selected One-tailed, because we only cared if bpm was higher after a run
- Group 1 is after the run, while group 2 is before the run
- If you only have the mean difference, can use that in the **From differences** option
- If you don't have correlation data, can guess it (0.5 is good standard if you have no idea)

Results:

- Need a sample size of 4 individuals (each with a before and after run measurement).
- Because the difference in means was so large, the effect size was huge, so it does not take many samples to test this question

Paired T-Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

You are interested in determining if heart rate is higher in patients after a doctor's visit compared to before a visit. You collected the following trial data and found mean heart rate before and after a visit.
 BPM before 126 88 53.1 98.5 88.3 82.5 105 41.9

、 [.]	T 7 •	1.	1. •••	• 6	1 1.	• •	C	•	1. 00
	BPM after	138.6	110.1	58.44	110.2	89.61	98.6	115.3	64.3
	BPM before	126	88	53.1	98.5	88.3	82.5	105	41.9

- 2. You are interested in determining if metabolic rate in patients after surgery is different from before surgery. You collected trial data and found a mean difference of 0.73 (SD=2.9).
- 3. You are interested in determining if glucose levels in patients after surgery are lower compared to before surgery.

Paired T-Test : Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if heart rate is higher in patients after a doctor's visit compared to before a visit. You collected the following trial data and found mean heart rate before and after a visit.

BPM before	126	88	53.1	98.5	88.3	82.5	105	41.9
BPM after	138.6	110.1	58.44	110.2	89.61	98.6	115.3	64.3

- Mean 1 (before)=85.4 with SD=27.2; Mean 2 (after)=98.1 with SD=26.8; correlation between groups=0.96
- Found an effect size of 1.66, then used a one-tailed test to get a total sample size of 4 pairs
- 2. You are interested in determining if metabolic rate in patients after surgery is different from before surgery. You collected trial data and found a mean difference of 0.73 (SD=2.9).
 - Found an effect size of 0.25, then used a two-tailed test to get a total sample size of 126
- 3. You are interested in determining if glucose levels in patients after surgery are lower compared to before surgery.
 - Guessed a small effect (0.20), then used a one-tail test to get a total sample size of 156

Paired Wilcoxon: Overview

Description: this tests if a mean from one group is different from the mean of another group, where the groups are dependent (not independent) for a non-normally distributed variable.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	2	1	No	Yes

Example:

- Are genome methylation patterns different between identical twins?
- $H_0=0\%$ methylation, $H_1\neq 0\%$ methylation

<u>GPower</u>:

- Select **t tests** from Test family
- Select Means: Wilcoxon signed-rank test (matched pairs) from Statistical test
- Select A priori from Type of power analysis

• Background Info:

- a) Select **One** or **Two** from the Tail(s), depending on type
- b) Select Parent Distribution (**Laplace, Logistic,** or **min ARE**) depending on variable (min ARE is good default if you don't know for sure)
- c) Enter 0.05 in α err prob box or a specific α you want for your study
- d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
- e) Hit Determine =>
- f) Enter in the Mean and SD for each group, as well as the **Correlation between groups**, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
- g) Hit Calculate on the main window
- h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run a-d as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters

Paired Wilcoxon: Example

Are genome methylation patterns different between identical twins?

- $H_0=0\%$ methylation, $H_1>0\%$ methylation
- You have no background information on this, so assume there is going to be a small effect (0.2).
- Selected one-tailed, because can't have negative methylation

Results:

 Need a sample size of 181 pairs of twins (362 individuals total).

	/iew Tests Calculato	i nep							
Central and	noncentral distribution	ns Protocol	of po	wer analyses					
[6] Wedr	nesday, March 18, 2020	10:37:14	!		~				
	leans: Wilcoxon signed	-rank test (m	natche	ed pairs)					
Options:									
Analysis:		equired samp							
Input:	Tail(s) Parent distribution			One min ARE					
	Effect size dz			0.2					
$\alpha \text{ err prob} = 0.05$ Power (1- β err prob) = 0.80									
Output:	Noncentrality param	neter δ		2.5010718					
	Critical t			1.6547192		Save			
	Df			155.384					
	Total sample size			181 0.8010298		Print			
	Actual power		-	0.8010298	×				
	ver analysis ompute required sampl	-		st (matched pairs) ower, and effect size		~			
A priori: Co	ompute required sampl	-		ower, and effect size		~			
A priori: Co	ompute required sampl	-		· · · ·		2.5010718			
A priori: Co	ompute required sampl	e size – giver One		ower, and effect size Output Parameters		2.5010718 1.6547192			
A priori: Co	pompute required sample nefers Tail(s) Parent distribution	e size – given One min ARE	n α, po	ower, and effect size Output Parameters Noncentrality parameter δ					
A priori: Co	pompute required sample nefers Tail(s) Parent distribution	one Min ARE	n α, po	ower, and effect size Output Parameters Noncentrality parameter δ Critical t		1.6547192			
A priori: Co	mpute required sample reters Parent distribution => Effect size dz	one min ARE	nα, po ~ ~ 0.2	Ower, and effect size Output Parameters Noncentrality parameter & Critical t Df		1.6547192 155.384			
A priori: Co	Parent distribution => Effect size dz & err prob	one min ARE	n α, po ~ 0.2	ower, and effect size Output Parameters Noncentrality parameter δ Critical t Df Total sample size		1.6547192 155.384 181			

Paired Wilcoxon: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- You are interested in determining if genome methylation patterns are different between fraternal twins. You collected trial data and found mean methylation levels in twin A at 43.2 (SD=20.9) and at 65.7 (SD=28.1) for twin B.
- 2. You are interested in determining if genome methylation patterns are higher in the first fraternal twin born compared to the second. You collected the following trial data on methylation level difference (in percentage).

Methy. Diff (%)	5.96	5.63	1.25	1.17	3.59	1.64	1.6	1.4
-----------------	------	------	------	------	------	------	-----	-----

3. You are interested in determining if the cancer risk rate is lower in the first identical twin born compared to the second.

Paired Wilcoxon: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

- 1. You are interested in determining if genome methylation patterns are different between fraternal twins. You collected trial data and found mean methylation levels in twin A at 43.2 (SD=20.9) and at 65.7 (SD=28.1) for twin B.
 - With a default correlation of 0.5, found an effect size of 0.89, then used a two-tailed test with a min ARE distribution to get a total sample size of 14 pairs
- 2. You are interested in determining if genome methylation patterns are higher in the first fraternal twin born compared to the second. You collected the following trial data on methylation level difference (in percentage).

Methy. Diff (%)	5.96	5.63	1.25	1.17	3.59	1.64	1.6	1.4
-----------------	------	------	------	------	------	------	-----	-----

• Mean of difference=2.505 with SD=1.87

- Found an effect size of 1.33, then used a one-tailed test with a min ARE distribution to get a total sample size of 6 pairs
- 3. You are interested in determining if the cancer risk rate is lower in the first identical twin born compared to the second.
 - Guessed a small effect (0.2) and because I didn't know the distribution went conservatively with min ARE, then used a onetailed test to get a total sample size of 181 pairs

One-way ANOVA: Overview

Description: this tests if at least one mean is different among groups, where the groups are larger than two, for a normally distributed variable. ANOVA is the extension of the Two Means T-test for more than two groups.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	>2	1	Yes	No

Example:

- Is there a difference in new car interest rates across 6 different cities?
- $H_0=0, H_1\neq 0$

- Select F tests from Test family
- Select ANOVA: Fixed effects, omnibus, one-way from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the number of groups
 - d) Hit Determine =>
 - e) Enter in the **Mean** and **Size** for each group, as well as the SD within each group, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - f) Hit Calculate on the main window
 - g) Find **Total sample size** in the Output Parameters
- Naïve:
 - a) Run a-c as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

One-way ANOVA: Example

Is there a difference in new car interest rates across 6 different cities?

- H₀=0%, H₁≠0%
- From a trial study, you found the following information for means

City	1	2	3	4	5	6
mean	13.19444	12.61111	13.30667	13.24444	13.48333	12.2

- With a SD of 0.786 and group sizes of 9
- No Tails in ANOVA
- If groups are equal size, can enter the size in the Purple box, then click
 Equal n

Results:

• A total number of 48 samples are needed (8 per group).

One-way ANOVA: Practice

- You are interested in determining there is a difference in weight lost between 4 different surgery options. You collect the following trial data of weight lost in pounds (shown on right)
- You are interested in determining if there is a difference in white blood cell counts between 5 different medication regimes.

Option 1	Option 2	Option 3	Option 4
6.3	9.9	5.1	1.0
2.8	4.1	2.9	2.8
7.8	3.9	3.6	4.8
7.9	6.3	5.7	3.9
4.9	6.9	4.5	1.6

One-way ANOVA: Answers

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):	Option 1	Option 2	Option 3	Option 4
 You are interested in determining there is a difference in weight lost between 4 different surgery options. You collect the following trial data of 	6.3	9.9	5.1	1.0
weight lost in pounds (shown on right)	2.8	4.1	2.9	2.8
 4 groups with group size of 5; means of 5.94, 6.22, 4.36, and 2.82 with SD=2.23 				
 Found an effect size of 0.61 for a total sample size of 36 	7.8	3.9	3.6	4.8
 You are interested in determining if there is a difference in white blood cell counts between 5 different medication regimes. 	7.9	6.3	5.7	3.9
 ^o 5 groups; guessed a medium effect size (0.25) for a total sample size of 200 	4.9	6.9	4.5	1.6

Kruskal Wallace Test: Overview

Description: this tests if at least one mean is different among groups, where the groups are larger than two for a non-normally distributed variable. There really isn't a standard way of calculating sample size in GPower, but you can use a rule of thumb:

- 1. Run Parametric Test
- 2. Add 15% to total sample size

(https://www.graphpad.com/guides/prism/7/statistics/in dex.htm?stat_sample_size_for_nonparametric_.htm)

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	>2	1	No	No

Example:

- Is there a difference in draft rank across 3 different months?
- H₀=0, H₁≠0

- Select **F tests** from Test family
- Select ANOVA: Fixed effects, omnibus, one-way from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the number of groups
 - d) Hit Determine =>
 - e) Enter in the **Mean** and **Size** for each group, as well as the SD within each group, then hit Calculate and transfer to main window (this will calculate effect size and add it to the Input Parameters)
 - f) Hit Calculate on the main window
 - g) Find Total sample size in the Output Parameters
 - h) Add 15% to size (Total + Total*0.15)
- Naïve:
 - a) Run a-c as above
 - b) Enter Effect size guess in the **Effect size d** box
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters
 - e) Add 15% to size (Total + Total*0.15)

Kruskal Wallace Test: Example

Is there a difference in draft rank across 3 different months?

- $H_0 = 0, H_1 \neq 0$
- You don't have background info, so you guess that there is a **medium** effect size (0.25)

Results:

- A total number of 159 samples are needed (53 per group) for the parametric (ANOVA)
- For the non-parametric:
 - \circ 159 + 159*0.15 = 182.85
 - Round up
 - Total of 183 samples (61 per group) are needed.
- Notice that non-parametric is weaker

ile Edit V	iew Tests Calculator	Help		x	
Central and	noncentral distributions	Protocol of pov	ver analyses		
	<i>nesday, January 15, 2020</i> NOVA: Fixed effects, om A priori: Compute req	nibus, one-way	2	^	
input:	Effect size f α err prob Power (1-β err prob)	= (0.25 0.05 0.80		Dropdown men
Output:	Number of groups Noncentrality paramet Critical F Numerator df	erλ =	9.9375000 3.0540042	Clear	Values you enter
	Denominator df Total sample size Actual power	=	156	Save	Value(s) GPowe Sample size calcu
Test family	Statistical test			✓ Print	r r r r r r r
F tests Type of pow A priori: Co Input Param	er analysis mpute required sample :	ffects, omnibus, size – given α, po		~	Effect size con f = .10 - small f = .25 - mediu f = .40 - large
Determine		0.25	Noncentrality parameter λ	9.9375000	Effect size f
	α err prob Power (1-β err prob)	0.05	Critical F Numerator df	3.0540042	α err prob
	Number of groups	3	Denominator df Total sample size	156 159	Power (1-β err prob)
			Actual power	0.8048873	Number of groups
				-	
			X-Y plot for a range of values	Calculate	

Dropdown menu items you specified

Values you entered

Value(s) GPower calculated

ct size conventions

n α, pow

0.5 27973

0.05

0.80

6

Sample size calculation

.25 - medium = .40 - large

Kruskal Wallace Test: Practice

- 1. You are interested in determining there is a difference in hours worked across 3 different groups (faculty, staff, and hourly workers). You collect the following trial data of weekly hours (shown on right).
- 2. You are interested in determining there is a difference in assistant professor salaries across 25 different departments.

Faculty	Staff	Hourly
42	46	29
45	45	42
46	37	33
55	42	50
42	40	23

Kruskal Wallace Test: Answers

- 1. You are interested in determining there is a difference in hours worked across 3 different groups (faculty, staff, and hourly workers). You collect the following trial data of weekly hours (shown on right).
 - 3 groups with group size of 5; means of 46, 42 and 35.4 with SD=8.07
 - Found an effect size of 0.54 for a parametric sample size of 39
 - 39*1.15=44.85 -> round up to total sample size of 45 (15 per group)
- 2. You are interested in determining there is a difference in assistant professor salaries across 25 different departments.
 - 25 groups; guessed a small effect size (0.10) for a parametric sample size of 2275
 - 2275*1.15=2616.26 -> round up to total sample size of 2625 (105 per group)

Faculty	Staff	Hourly
42	46	29
45	45	42
46	37	33
55	42	50
42	40	23

Repeated Measures ANOVA: Overview

Description: this tests if at least one mean is different among groups, where the groups are repeated measures (more than two) for a normally distributed variable. Repeated Measures ANOVA is the extension of the Paired T-test for more than two groups.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	>2	1	Yes	Yes

Example:

- Is there a difference in blood pressure at 1,2, 3, and 4 months post-treatment?
- ∘ $H_0=0$ bpm, $H_1\neq 0$ bpm

- Select **F tests** from Test family
- Select ANOVA: Repeated measures, within factors from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the number of **groups** and **measurements** (see next page)
 - d) Enter the **Corr among rep measures** and the **Nonsphericity correction** ϵ (see next page)
 - e) Hit Determine =>
 - f) Enter calculated **Partial** η^2 (eta squared) (see next page)
 - for *Background*, enter calculated eta squared and select as in SPSS for the Effect size specification in the Options bar
 - for *Naïve*, enter guess eta squared (based on convention) and keep the Effect size specification on as in Gpower 3.0 and will also have to enter a guess for the Corr among rep measures parameter
 - g) Hit Calculate and transfer to main window
 - h) Hit Calculate on the main window
 - i) Find **Total sample size** in the Output Parameters

Repeated Measures ANOVA: parameters and how to calculate them

- Number of groups: how many different groups are being subjected to the repeated measurements
 - In the simple case, it is one (college students)
 - In more complex designs, it may be more than one (college freshman, sophomores, juniors, and seniors)
- Number of measurements: how many repeats of a measurement
 - Ex. number of times blood pressure is measured
- Corr among rep measures: Correlation
 - No easy way to get a single correlation value
 - Can average all the values from a correlation table
 - ° Or default to 0.5 unless you have reason to believe it higher or lower
- Nonsphericity correction ϵ : The assumption of sphericity,
 - Can be estimated with background info
 - Otherwise, if the data is assumed to be spherical, enter 1
 - ° Spherical: variances of the differences between all possible pairs of the within subjects variable should be equivalent
- Partial η2 (eta squared): proportion of the total variance in a dependent variable that is associated with the membership of different groups defined by an independent variable
 - The larger the eta, the larger the effect size
 - Can be estimated with background information (Equation is $\eta 2 = SS_{eff} / (SS_{eff} + SS_{err})$ where SS_{eff} is the sum of squares between groups and the SS_{err} is the sum of squares within groups
 - Otherwise, enter guessed value; convention is small=0.02, medium=0.06, large=0.14

Repeated Measures ANOVA: Example

Is there a difference in blood pressure at 1, 2, 3, and 4 months post-treatment?

- $H_0=0$, $H_1\neq 0$
- ° 1 group, 4 measurements
- Have no background info
- Assume 0.5 correlation and Nonsphericity correction of 1.0
- Assume **small** partial eta-squared (0.02)

Results:

 A total number of 69 samples are needed (each getting 4 measurements).

Central and noncentral distributions Protocol of power analyses Dropdown menu items you specified	G*Power 3.1.9.4		– 🗆 X	
[64] - Thursday, January 16, 2020 - 08:53:36 Prests - ANOVA: Repeated measures, within factors Analysis: A profit: Compute required sample size 0.1428571 Imput: Effect size f 0.122871 Number of groups 1 Clear Number of measurements 0.5 Nonsphericity correction e 1 Output: Nonsphericity correction e 1 Numerator df 2.04 Prover (1-β per prob) 0.80 Numerator df 2.04 Priorit Compute required sample size - given α, power, and effect size Number of groups 1 Number of roups 0.05 Priorit Compute required sample size - given α, power, and effect size Number of groups 0.05 Number of groups 0.060 Number of groups 0.01 Number of groups 1 Number of groups 1 Number of groups 1 Number of groups 1 Number of groups 0.80089898 Actual power 0.80589898 O Direct 0.1428571 Calculate Effect size f	ile Edit View Tests Calculator Help			
Fests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: er prob Number of proups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Numerator off = 2.04 Power (1-8 per prob) = 0.80 Number of groups = 1 Output: Nonsphericity correction e Numerator off = 2.04 Person = 0.000000 Print: Fests = 1 Numerator off = 2.04 Print: Fests = 1 Nonsphericity correction e = 1 Numerator off = 2.04 Print: Fests = 1 Noncentrality parameter λ = 1.2652994 Corr among rep measures, otop Output Parameters Input Parameters Output Parameters Noncentrality parameters disc Value(s) GPower calculated Noncentrality parameters 0.11.2652994 Corr among rep measures 0.5 Nonsphericity correction e 1 Number of groups 1 Nons	Central and noncentral distributions Protocol of pov	ver analyses		Dropdown menu items you specifie
Analysis: A priori Compute required sample size input: Effect size f ever prob = 0.1428571 werr prob = 0.0200 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Numerator df = 2.0488634 Anoreit Numerator df = 2.04 Priori Statistical test Fests ANOVA: Repeated measures, within factors Type of power analysis Anion: Compute required sample size - given α, power, and effect size input Parameters Output Parameters Determine => Effect size f Number of groups 1 Number of groups 1 Number of groups 1 Noncentrality parameters 0.000000 Determine => Effect size f Output Parameters 0.005 Noncentrality parameters 0.005 Nonsphericity correction e 1 Number of groups 1	[64] Thursday, January 16, 2020 08:53:36		^	
Anarysis: A profit Compute required sample size imput: Effect size f a err prob Power (1-P err prob) = 0.80 Number of measurements = 4 Corr among rep measures = 0.5 Output: Noncentrality parameter A = 11.2525994 Critical F Power advector of a = 3.0000000 Print Fetsts NOVA: Repeated measures, within factors Type of power analysis A prior: Compute required sample size - given o, power, and effect size Determine => Effect size f 0.1428571 Variance explained by effect 1.0 Variance within group 2.0 Denominator of 2044 Corr among rep measures 0.5 Nonsphericity correction e 1 Number of groups	• •			Values you entered
α err prob = 0.05 Number of groups = 0.80 Number of groups = 1 Number of groups = 1 Corr among rep measures = 4 Corr among rep measures = 0.5 Nonsphericity correction e = 1 11.2552994 Save Critical F = 2.6488534 Critical F = 2.6488534 Print Statistical test Fests ANOVA: Repeated measures, within factors Type of power analysis Anoret and prameters Apriori: Compute required sample size - given α, power, and effect size 11.2552994 Critical F = 2.04 Numerator of = 2.04 Variance explained by effect 1.0 Variance within group 2.0 Determine => Effect size f 0.1428571 Number of measures 0.50 Number of measures 0.50 Nonsphericity correction e 1 Output Parameters <t< th=""><th></th><th></th><th></th><th>, , , , , , , , , , , , , , , , , , ,</th></t<>				, , , , , , , , , , , , , , , , , , ,
Power (1-β err prob) = 0.80 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction e = 1 Citical F = 2.6488634 Numerator of = 3.0000000 Print Saree Test family Statistical test F tests ANOVA: Repeated measures, within factors Type of power analysis Apriori: Compute required sample size - given α, power, and effect size Input Parameters Output Parameters Determine => Effect size f 0.1428571 Noncentrality parameter A 11.2652994 Corr among rep measures 0.05 Number of groups 1 Nonsphericity correction e 1 Corr among rep measures 0.5 Nonsphericity correction e 1 Number of groups 1 Corr among rep measures 0.5 Nonsphericity correction e <td< th=""><th>-</th><th></th><th></th><th>Value(s) GPower calculated</th></td<>	-			Value(s) GPower calculated
Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction e = 1 Numerator of = 2.64886534 Numerator of = 2.04 Test family Staticical test F tests ANOVA: Repeated measures, within factors Type of power analysis ANOVA: Repeated measures, within factors Type of power analysis Output Parameters Determine => Effect size f Unumber of groups 11.2652994 Critical F 2.64886534 Number of groups Numerator of Determine => Effect size f Number of groups 11.2652994 Critical F 2.64886534 Numerator off 3.0000000 Power (1-\$ err prob) 0.80 Number of groups 1 Number of groups 1 Number of groups 1 Number of groups 1 Nonsphericity correction e 1 Nonsphericity correction e 1 Nonsphericity correction e 1 Outpu	•			value(s) Of ower calculated
Corr among rep measures = 0.5 Nonsphericity correction e = 1 Noncentrality parameter A Critical F = 2.6438634 Critical F = 2.04 Print Text family Statistical text F tests → ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size Noncentrality parameters Determine => Effect size f 0.1428577 Noncentrality parameters 0.5 Nonsphericity correction e 1 Number of groups 1 Number of groups 1 Number of groups 1 Number of groups 1 Nonsphericity correction e 1 Nonsphericity correct				
Output: Nonsphericity correction e = 1 Noncentrality parameter λ = 1.12552994 Critical F = 2.6488634 Numerator df = 3.000000 penominator df = 3.000000 Print Test family Statistical test Print Type of power analysis ANOVA: Repeated measures, within factors A priori: Compute required sample size - given α, power, and effect size Input Parameters Output Parameters Determine => Effect size f Mumber of groups 1 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Number of measurements 0 Nonsphericity correction e 1 Nonsphericity correction e 1 Nonsphericity correction e 1 Numerator df 2.001 Cotal sample size 693 Actual power	Number of measurements =	4	Clear	Sample size calculation
Output: Noncentrality parameter λ = 11.2552994 Critical F = 2.6486634 Numerator df = 3.000000 Denominator df = 204 Print Text family Statistical rest ANOVA: Repeated measures, within factors Imput Parameters Type of power analysis Imput Parameters A priori: Compute required sample size - given α, power, and effect size Imput Parameters Determine => Effect size f 0.1428571 Output Parameters Variance explained by effect 1.0 Variance within group 2.0 Number of groups 1 1.12652994 Corr among rep measures 0.5 Nonsphericity correction e 1 2.6488634 Nonsphericity correction e 1 Nonsphericity correction e 1 0.020 Claiculate Effect size f 0.1428571 Claiculate and transfer to main window Close	Corr among rep measures = 0	0.5		
Critical F = 2.6488634 Numerator df = 3.0000000 Denominator df = 2.04 Test family Statistical test F tests ▲ ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 ▲ err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Nonsphericity correction e 1 Nonsphericity correction e 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Nonsphericity correction e 1 No		•		
Numerator df = 3.000000 Denominator df = 204 Print Test family Statistical test Ftests ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given or, power, and effect size Input Parameters Determine => Effect size f 0.1428571 Noncentrality parameter A 11.2652994 Critical F 2.6488634 Numerator df 3.0000000 Denominator df 2044 Total sample size 669 Actual power 0.8058989 Direct Partial n ² 0.02 Partial n ² 0.02 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close			Save	
Denominator df = 204 Print Test family Statistical test F tests ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 Output Parameters Determine of groups 1 Number of groups 1 Number of measurements 0.5 Nonsphericity correction e 0.8058989 Actual power 0.8058989 O lirect Partial n² Direct Partial n² Calculate Effect size f 0.1428571 Calculate and transfer to main window				
Test family Statistical test F tests ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 Noncentrality parameter λ 11.2652994 Critical F 2.6488634 Numerator df 3.0000000 Denominator df Denominator df Corr among rep measures 0.5 Nonsphericity correction e 1 Nonsphericity correction e 0.1428571 Calculate Effect size f 0.1428571 Corr among rep measures 0.5 Nonsphericity correction e 1 Calculate Effect size f 0.1428571 Calculate and transfer to main window Ciose			Print	
F tests ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size input Parameters Determine => Effect size f 0.1428571 Number of groups Number of groups Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 1 0 Determine => Effect size f 0.1428571 Numerator df 2.04 Total sample size 6 0 Direct Partial n² 0.02 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close	Denominator di =	204	×	
F tests ANOVA: Repeated measures, within factors Type of power analysis A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 Number of groups Number of groups Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Direct Partial n² 0.02 Calculate Effect size f 0.1428571 Corr among rep measures 0.5 0.8058989 0.1428571 Corr among rep measures 0.5 0.8058989 0.1428571 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close	Test family Statistical test			
Type of power analysis A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 Noncentrality parameter λ 11.2652994 Critical F 2.6488634 Number of groups 1 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Output Parameters 0.8058989 Actual power 0.8058989 Output Parameters 0.02 Calculate Effect size f 0.1428571 Calculate and transfer to main window	· · · · · · · · · · · · · · · · · · ·			
A priori: Compute required sample size - given α, power, and effect size A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 A err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Direct Partial η² 0.02 Calculate and transfer to main window Close	F tests ~ ANOVA: Repeated measures, with	hin factors	~	
A priori: Compute required sample size - given α, power, and effect size A priori: Compute required sample size - given α, power, and effect size Input Parameters Determine => Effect size f 0.1428571 A err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Direct Partial η² 0.02 Calculate and transfer to main window Close	Type of power analysis			
Input Parameters Output Parameters Determine => Effect size f 0.1428571 \u03cm arr prob 0.05 Power (1-\u03cm prob) 0.80 Number of groups 1 Number of groups 1 Total sample size 69 Actual power 0.8058989 Nonsphericity correction e 1 Direct Partial n² Output Parameters 0.1428571 Corr among rep measures 0.5 Nonsphericity correction e 1 Output Parameters 0.8058989 Output Parameters 0.1428571 Calculate Effect size f 0.1428571 Calculate and transfer to main window		and affect size		
nput Parameters Output Parameters Determine => Effect size f 0.1428571 x err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Output Parameter λ 11.2652994 Variance explained by effect 1.0 Variance within group 2.0 Variance within group 2.0 Denominator df 204 Total sample size 69 Actual power 0.8058989 Olicet Partial n² Direct Partial n² Calculate Effect size f O.1428571 Close	A priori. Compute required sample size – given a, po	wer, and effect size	Ť	
Determine => Effect size f 0.1428571 α err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Actual power 0.8058989 Corr among rep measures 0.5 Nonsphericity correction e 1 Corr among rep measures 0.5 Nonsphericity correction e 1 Corre among rep measures 0.5 Nonsphericity correction e 1		Output Providence		From variances
α err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close			11.0050004	Variance explained by effect 1.0
α err prob 0.05 Power (1-β err prob) 0.80 Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Vertical F 2.6488634 Number of groups 1 Corr among rep measures 0.5 Nonsphericity correction e 1 Corr	Determine => Effect size f 0.1428571	Noncentrality parameter λ	11.2652994	
Number of groups 1 Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Image: Correction e 1 Image: Correc	α err prob 0.05	Critical F	2.6488634	Variance within group 2.0
Number of measurements 4 Corr among rep measures 0.5 Nonsphericity correction e 1 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close	Power (1-β err prob) 0.80	Numerator df	3.000000	
Corr among rep measures 0.5 Nonsphericity correction e 1 Actual power 0.8058989 Image: Corr among rep measures 0.2 Image: Corr among rep measures 1 Image: Corr among rep measures 0.2 Image: Corr among rep measures 1 Image: Corr among rep measures 0.2	Number of groups 1	Denominator df	204	
Nonsphericity correction e 1 Image: Construction e 1<	Number of measurements 4	Total sample size	69	
Nonsphericity correction e 1 Partial n² 0.02 Calculate Effect size f 0.1428571 Calculate and transfer to main window Close	Corr among rep measures 0.5	Actual power	0.8058989	Direct
Calculate and transfer to main window Close	Nonsphericity correction 6	L		
Calculate and transfer to main window Close	Nonsphericity correction e			
Calculate and transfer to main window Close				
Close				Calculate Effect size F 0.1428571
Close				
				Calculate and transfer to main window
				Close
Options X-Y plot for a range of values Calculate				Close
	Options	X-Y plot for a range of values	Calculate	

Repeated Measures ANOVA: Practice

- 1. You are interested in determining if there is a difference in blood serum levels at 6, 12, 18, and 24 months post-treatment. You collect the following trial data of blood serum in mg/dL (shown on right).
- 2. You are interested in determining if there is a difference in antibody levels at 1, 2, and 3 months post-treatment.
 - Info: no background info, but expect nonsphericity correction of 1, correlation of 0.5, and medium eta squared (remember to select *as in GPower 3.0* in options)

6 months	12 months	18 months	24 months
38	38	46	52
13	44	15	29
32	35	53	60
35	48	51	44
21	27	29	36

Repeated Measures ANOVA: Answers

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):	6 months	12 months	18 months	24 months
1. You are interested in determining if there is a difference in blood serum levels at 6, 12, 18, and 24 months post-treatment? You collect the following trial data of blood serum in mg/dL (shown on right).	38	38	46	52
 1 group, 4 measurements Ran Repeated measures in SPSS with data to get η2 = SS_{eff} / (SS_{eff} + SS_{err}) η2 = 19531.2 / (19531.2 + 1789.5) = 0.92 (selected <i>as in SPSS</i> in options) 	13	44	15	29
 Sphericity was non-significant (p=0.712), so nonsphericity correction is 1.0 Got effect size of 3.39 for a total sample size of 3 You are interested in determining if there is a difference in antibody levels at 1, 2, and 3 months post-treatment? 	32	35	53	60
 1 group, 3 measurements Guessed a medium eta squared (0.06), selected <i>as in GPower 3.0</i> in options 	35	48	51	44
 Set correlation to default of 0.5 and nonsphericity correction to 1.0 Got effect size of 0.25 for a total sample size of 27 	21	27	29	36

Friedman Test: Overview

Description: this tests if at least one mean is different among groups, where the groups are repeated measures (more than two) for a nonnormally distributed variable. The Friedman test is the extension of the Two Means Wilcoxon test for more than two groups.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	1	>2	1	No	Yes

Example:

- Is there a difference in taste preference across three different desserts for a group of students?
- H₀=0, H₁≠0

- Select F tests from Test family
- Select ANOVA: Repeated measures, within factors from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the number of **groups** and **measurements**
 - d) Enter the Nonsphericity correction ϵ
 - e) Hit Determine =>
 - f) Enter **Partial** η^2 (eta squared)
 - for *Background*, enter calculated eta squared and select as in SPSS for the Effect size specification in the Options bar
 - for *Naïve*, enter guess eta squared (based on convention) and keep the Effect size specification on as in Gpower 3.0 and will also have to enter a guess for the Corr among rep measures parameter
 - g) Hit Calculate and transfer to main window
 - h) Hit Calculate on the main window
 - i) Find **Total sample size** in the Output Parameters
 - j) Add 15% to size (Total + Total*0.15)

Friedman Test: Example

Is there a difference in taste preference across three different desserts for a group of students?

- $H_0=0$, $H_1\neq 0$
- 1 group, 3 measurements
- From a trial study, you found a sphericity of 0.888
- The eta-squared was
 - \circ SS_{eff} / (SS_{eff} + SS_{err})
 - 18 / (18 + 40) = 0.31
- Make sure to select the correction **Option**

Results:

- A total number of 15 samples are needed for parametric
- Non-parametric:
 - 15 + 15*0.15 =17.25 (round up) -> 18
 - A total of 18 samples are needed (each getting 3 measurements).

Friedman Test: Practice

- 1. You are interested in determining if there is a difference in taste preference across four different main courses for a group of students. You collect the following trial data of food preferences(shown on right).
- 2. You are interested in determining if there is a difference in movie preference across five different genres for a group of students.

steak	lobster	burgers	noodles
9	1	6	6
8	8	9	4
9	8	10	7
5	9	5	2
8	2	7	3

Friedman Test: Answers

- 1. You are interested in determining if there is a difference in taste preference across four different main courses for a group of students. You collect the following trial data of food preferences(shown on right).
 - 1 group, 4 measurements
 - Ran Repeated measures in SPSS with data to get $\eta 2 = SS_{eff} / (SS_{eff} + SS_{err})$
 - $\eta 2 = 793.8 / (793.8 + 36.7) = 0.95$ (selected *as in SPSS* in options)
 - Sphericity was non-significant (p=0.165), so nonsphericity correction is 1.0
 - Got effect size of 4.35 for a parametric sample size of 3
 - 3*1.15=3.45 -> round up to total sample size of 4
- 2. You are interested in determining if there is a difference in movie preference across five different genres for a group of students.
 - 1 group, 5 measurements
 - Guessed a large eta squared (0.14), selected as in GPower 3.0 in options
 - Set correlation to default of 0.5 and nonsphericity correction to 1.0
 - Got effect size of 0.40 for a parametric sample size of 9
 - 9*1.15=10.35 -> round up to total sample size of 11

steak	lobster	burgers	noodles
9	1	6	6
8	8	9	4
9	8	10	7
5	9	5	2
8	2	7	3

Multi-Way ANOVA (1 Category of interest): Overview

Description: this test is an extension of ANOVA, where there is more than one category, but only one category is of interest. The other category/categories are things that need to be controlled for (blocking/nesting/random effects/etc.).

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired	
1	≥2	≥2	1	Yes	No	

Example:

- Is there difference in treatment (Drug A, B, and C) from a series of four different hospital sections (Block 1, 2, 3, and 4)?
- H₀=0, H₁≠0

- Select F tests from Test family
- Select ANOVA: Fixed effects, special, main effects and interactions from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the **number of groups** and **Numerator df** (df for the category of interest only)
 - d) Hit Determine =>
 - e) Enter calculated **Partial** η^2 (eta squared)
 - f) Hit Calculate and transfer to main window
 - g) Hit Calculate on the main window
 - h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Follow steps a-c as above
 - b) Estimate **effect size f**
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Multi-Way ANOVA: Parameters and how to calculate them

• Numerator df = degrees of freedom for the effect you want to test

• Degrees of freedom found by taken the number of categories for the predictor variable or interaction and subtracting one

- For interactions between variables, the degrees of freedom need to be multiplied together
- For example, in a design with three seating locations and two genders:
 - For the predictor variable seating location, enter 3 (locations) -1 = 2 df
 - For the predictor variable gender, enter 2 (genders) -1 = 1 df
 - For the interaction, enter (3-1) * (2-1) = 2 df
- Since we only want to look at the effect of a single category: just use that category's DF
 - If in the sample above, we only care about seating (we included gender to control for the difference b/t genders) = 2df
- Number of groups = found by multiplying the number of levels in both predictor variables. In this example there are 2 genders and 3 seating locations, so 2 x 3 = 6

'Randomised block' design example: Test effects of treatment on RBC in mice: Randomised block design

Multi-Way ANOVA: Categories to control for

- When you are running a multi-way ANOVA for only 1 category of interest, that means you only care about one category (say drug type), but there are other factors that might interfere with your ability to detect that category because those categories have variation among the groups
- Examples of interfering factors: gender, location, age, etc.
- Below are common classes of effects that are controlled for in ANOVA
 - **Blocking**: samples come from different blocks (locations) –ex. Nutrient treatment types across different fields
 - **Nesting**: samples are located within higher order variables –ex. Leaves are nested within branch
 - Split-Plot: More complicated version of blocking with two levels of experimental units – ex. Pesticide treatment in greenhouse trays across whole and subplots

Under Over Under Over Under Over Under Over

Three Level nested ANOVA exploring the wage gap for women and men of different heights and weights.

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2015/07/nested-anova.png

lot 1	Whole Plot 2				
Sub Plot 3	Sub Plot 1	Sub Plot 3			
Sub Plot 4	Sub Plot 2	Sub Plot 4			
Sub Plot 3	Sub Plot 1	Sub Plot 3			
Sub Plot 4	Sub Plot 2	Sub Plot 4			
lot 3	Whole	Plot 4			
	Sub Plot 3 Sub Plot 4 Sub Plot 3 Sub Plot 4	Sub Plot 3 Sub Plot 1 Sub Plot 4 Sub Plot 2 Sub Plot 3 Sub Plot 1 Sub Plot 4 Sub Plot 2			

Multi-Way ANOVA (1 Category of interest): Example

Is there difference in treatment (Drug A, B, and C) from a series of four different hospital sections (Block 1, 2, 3, and 4)?

- H₀=0, H₁≠0
- Category of interest: Treatment
- Want to control for the Sections (Blocking)
- No background information
- Assume medium effect size
- Numerator df (Treatment) = 3-1=2
- Number of groups (Treatment * Sections) = 3*4 =12

Results:

• A total number of 158 samples are needed, so 13.17 per group, rounding up to 14 per group (168 total).

Multi-Way ANOVA (>1 Category of interest): Overview

Description: this test is an extension of ANOVA, where there is more than one category, and each category is of interest. If there is two categories, it is 2-way ANOVA; three categories, 3-way ANOVA, etc.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
1	≥2	≥2	>1	Yes	No

Example:

- Is there difference in treatment (Drug A, B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V)?
- \circ H₀=0, H₁ \neq 0

- Select F tests from Test family
- Select ANOVA: Fixed effects, specia, main effects and interactions from Statistical test
- Select A priori from Type of power analysis
- Background Info:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter the number of groups and Numerator df (df for all categories of interest)
 - d) Hit Determine =>
 - e) Enter calculated **Partial** η^2 (eta squared)
 - f) Hit Calculate and transfer to main window
 - g) Hit Calculate on the main window
 - h) Find **Total sample size** in the Output Parameters
- Naïve:
 - a) Follow steps a-c as above
 - b) Estimate **effect size f**
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Multi-Way ANOVA (>1 Category of interest): Example

Is there difference in treatment (Drug A, B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V)?

- H₀=0, H₁≠0
- Categories of interest: Treatment, Age, and Caner Stage
- Based on trial study, the **partial eta**squared=0.0042
- Numerator df = Treat DF * Age DF * Stage DF = (3-1)*(3-1)*(5-1)=2*2*4=16
- Number of groups = Treat*Age*Stage = 3*3*5=45

Results:

 A total number of 4582 samples are needed, so 101.82 per group, rounding up to 102 (4590 total).

Multi-Way ANOVA: Non-Parametric

- ° There really isn't a non-parametric option like in the one-way or repeated measures ANOVA
- Two options:
 - Turn to a more sophisticated model for your statistical test, like a Generalized Linear Mixed Model (explained later)
 - Run a parametric test, then add the extra 15% at the end like we've done before for simpler non-parametric ANOVA paralogs

	Non-Parametric Reanalysis									
Test	Question	Parametric Sample size	Calculations	Non-parametric Sample size						
Multi-Way, 1 category of interest	Is there difference in treatment (Drug A, B, and C) from a series of four different hospital sections (Block 1, 2, 3, and 4)?	251	251+251*0.15=288.65 288.65/12(groups)=24.05 -> 25 25*12(groups)=300	300						
Multi-Way, 1 category of interest	Is there difference in treatment (Drug A, B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V)?	4582	4582+4582*0.15=5269.3 5269.3/45(groups)=117.09 ->118 118*45(groups) = 5310	5310						

Multi-Way ANOVA: Practice

- 1. You are interested in determining if there is a difference in treatment (Drug A, B, and C), while controlling for age (child, adult, elder). You collect the following trial data for treatment (shown on right).
- 2. You are interested in determining if there is a difference in treatment (Drug A, B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V).

	Drug A			Drug B Drug C			Drug B			C
child	adult	elder	child	adult	elder	child	adult	elder		
-6.4	8.7	-3.1	1.3	-6.0	6.8	-2.0	-4.3	-1.2		
-8.2	-6.3	-6.5	3.6	1.3	2.4	1.5	1.3	1.1		
7.9	-1	-1.5	3.9	-1.9	1.3	2.48	-8.2	-9.7		

Multi-Way ANOVA: Answers

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):]	Drug A		Drug B			Drug C		C
1. You are interested in determining if there is a difference in treatment (Drug A, B, and C), while controlling for age (child, adult, elder). You									
 collect the following trial data for treatment (shown on right). Only care about treatment so numerator df is 3-1=2 	child	adult	elder	child	adult	elder	child	adult	elder
 Number of groups is 3*3=9 Ran Univariate ANOVA in SPSS with data to get η2 = SS_{eff} / (SS_{eff} + 	-6.4	8.7	-3.1	1.3	-6.0	6.8	-2.0	-4.3	-1.2
SS_{err} $ \gamma 2 = 68.8 / (68.8 + 96.3) = 0.416$ $ Or effect size of 0.84 for a total sample size of 19$	0.1	0.7	5.1	1.5	0.0	0.0	2.0	1.5	1.2
2. You are interested in determining if there is a difference in treatment (Drug A, B, and C) across age (child, adult, elder) and cancer stage (I, II, III, IV, V).	-8.2	-6.3	-6.5	3.6	1.3	2.4	1.5	1.3	1.1
 Care about treatment, age, and cancer stage Numerator df = (3-1)*(3-1)*(5-1)=2*2*4=16 	7.9	-1	-1.5	3.9	-1.9	1.3	2.48	-8.2	-9.7
• Number of groups is 3*3*5=45	1.9	-1	-1.5	5.9	-1.9	1.3	2.40	-0.2	-9.1
 Guessed a medium effect size (0.25) for a total sample size of 323 									

Proportion Test: Overview

Description: this tests when you only have a single categorical value with only two groups, and you want to know if the proportions of certain values differ from some constant proportion. (binomial, AKA=Yes/No, 1/0, etc.)

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
0	1	2	1	N/A	N/A

Example:

- Is there a significance difference in cancer prevalence of middle-aged women who have a sister with breast cancer compared to the general population prevalence (proportion=0.02, or 2%)?
- H₀=0, H₁≠0

- Select **Exact** from Test family
- Select **Proportion: Difference from constant (binomial test, one sample case)** from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Select **One** or **Two** Tail(s) as appropriate to your question
 - b) Enter 0.05 in α err prob box or a specific α you want for your study
 - c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - d) Enter the **constant proportion** (whatever constant proportion you are measuring your proportion of interest against)
 - e) Hit Determine =>
 - f) Select **Difference P2-P1** from the **Calc P2 from** option (doesn't really matter, all give you about the same effect size)
 - g) Put the constant proportion in the P1 box
 - h) Put the **alternative proportion** in the **P2 box:**
 - a) For *Background*: enter the value from your background information
 - b) For *Naïve*: guess the value and enter it in
 - 0.2=small, 0. 5=medium, and 0.8 large effect sizes
 -) Hit Sync Values, then Calculate and transfer to main window
 - j) Hit Calculate on the main window
 - k) Find **Total sample size** in the Output Parameters

Proportion Test: Example

Is there a significance difference in cancer prevalence of middle-aged women who have a sister with breast cancer compared to the general population prevalence (proportion=0.02, or 2%)?

- H₀=0, H₁≠0
- Based on background information, we found the prevalence (proportion) of women w/ sister who has breast cancer to get breast cancer was 0.05.
- Want to use two-tailed, because only care if there is a difference, not directionality

Results:

• A total number of 272 samples are needed.

Proportion Test: Practice

- 1. You are interested in determining if the male incidence rate proportion of cancer in North Dakota is higher than the US average (prop=0.00490). You find trial data cancer prevalence of 0.00495.
- 2. You are interested in determining if the female incidence rate proportion of cancer in North Dakota is lower than the US average (prop=0.00420).

Proportion Test: Answers

- You are interested in determining if the male incidence rate (proportion per 100,000) of cancer in North Dakota is higher than the US average (prop=0.00490). You find trial data cancer prevalence of 0.00495.
 - The difference in P2-P1 is 0.00005 (constant proportion is 0.0049)
 - Got effect size of 0.00005 and used a one-tailed test for a total sample size of 12,113,157
- 2. You are interested in determining if the female incidence rate proportion of cancer in North Dakota is lower than the US average (prop=0.00420).
 - Guessed a very small effect size (0.0001) and entered a constant proportion of 0.00420
 - Used a one-tailed test for a total sample size of 2,490,591

Fisher's Exact Test: Overview

Description: this test when you only have 2 categorical variables and you want to know if the proportions are different between groups, where the groups are not related. Essentially testing between an observed proportion and an expected one. Also called independent Chi-Squared test.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
0	2	2	2	N/A	No

Example:

- Is the expected proportion of students passing a stats course taught by psychology teachers of 0.85 different from the observed proportion of students passing the same stats class taught by mathematics teachers of 0.95
- H₀=0, H₁≠0

- Select **Exact** from Test family
- Select Proportion: Inequality, two independent groups (Fisher's exact test) from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Select **One** or **Two** Tail(s) as appropriate to your question
 - b) Enter values for **Proportion p1 and p2**
 - a) P1 is the 'expected value'
 - b) P2 is the 'observed value' if you don't have background info, you will have to guess on this
 - c) Enter 0.05 in α err prob box or a specific α you want for your study
 - d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - e) Enter 1.0 in Allocation ration N2/N1 unless the group sizes are different
 - f) Hit Calculate on the main window
 - g) Find Total sample size in the Output Parameters

Fisher's Exact Test: Example

Is the expected proportion of students passing a stats course taught by psychology teachers of 0.85 different from the observed proportion of students passing the same stats class taught by mathematics teachers of 0.95?

- H₀=0, H₁≠0
- P1 is the expected value of 0.85
- P2 is the observed value of 0.95
- Want to use two-tailed, because only care if there is a difference, not directionality

Results:

• A total number of 302 samples are needed.

Fisher's Exact Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the expected proportion (P1) of students passing a stats course taught by psychology teachers is <u>different</u> than the observed proportion (P2) of students passing the same stats class taught by biology teachers. You collected the following data of passed tests. You also know that twice as many students take the psychology class than the biology one.

Psychology	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No
Biology	No	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes

1. You are interested in determining of the expected proportion (P1) of female students who selected YES on a question was <u>higher</u> than the observed proportion (P2) of male students who selected YES. The observed proportion of males who selected yes was 0.75.

Fisher's Exact Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the expected proportion (P1) of students passing a stats course taught by psychology teachers is <u>different</u> than the observed proportion (P2) of students passing the same stats class taught by biology teachers. You collected the following data of passed tests. You also know that twice as many students take the psychology class than the biology one.

Psychology	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No
Biology	No	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes

• **Psychology proportion is 7/10=0.70; biology proportion is 6/10=0.60; allocation ratio is 0.5**

• For a two-tailed test, the total sample size is 812 (541 for psychology class, 271 for biology class)

- 2. You are interested in determining of the expected proportion (P1) of female students who selected YES on a question was <u>higher</u> than the observed proportion (P2) of male students who selected YES. The observed proportion of males who selected yes was 0.75.
 - Don't have any info on the female students, but will guess that it is 0.10 higher (P1=0.85)
 - For a one-tailed test, the total sample size is 430 (215 each male and female)

McNamar's Test: Overview

Description: this test when you only have 2 categorical variables and you want to know if the proportions are different between groups, where the groups are related (paired). Still testing between an observed proportion and an expected one. Also called dependent Chi-Squared test.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
0	2	2	2	N/A	Yes

Example:

- Is there a difference in innate immune response (good/poor) for patients taking Vitamin D or not (yes/no)?
- $H_0=0$, $H_1\neq 0$

- Select **Exact** from Test family
- Select Proportion: Inequality, two dependent groups (McNemar) from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Select **One** or **Two** Tail(s) as appropriate to your question
 - b) Enter value for **Odds ratio**: (see next page)
 - c) Enter 0.05 in **a err prob** box or a specific **a** you want for your study
 - d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - e) Enter value for **Prop discordant pairs: (see next page)**
 - f) Hit **Calculate** on main window
 - g) Find Total sample size in the Output Parameters

McNamar's Test: Proportion table

- To calculate the **Odds Ratio** and **Prop discordant pairs,** it is important to understand what the data looks like
- To the right is trial data from our example: the number are proportions for each category pair
- $\circ~$ Note: the proportions must all sum to 1.0
- Discordant pairs are the proportions for the groups that don't match up
 - ° Good Immune Response for Vitamin D and Poor response with No Vitamin D
 - Poor Immune Response for Vitamin D and Good response with No Vitamin D
 - The stronger the two categories are related to each other, the smaller the discordant pair proportions should be
- The Odds Ratio is the quotient of the discordant pairs
 - 0.02/0.13= 0.1538 (Note: The opposite quotient 0.13 / 0.02 = 6.5 produces the same result in GPower)
- The **Proportion of discordant pairs** is the sum of the discordant pairs
 - 0.02+0.13=0.15

McNamar's Test: Example

Is there a difference in innate immune response (good/poor) for patients taking Vitamin D or not (yes/no)?

- ∘ $H_0=0$, $H_1\neq 0$
- Based on background information from the previous page,
 - Odds Ratio=0.02/0.13=**0.1538**
 - Prop discordant pairs=0.02+0.13=0.15
- Want to use two-tailed, because only care if there is a difference, not directionality

Results:

• A total number of 100 samples are needed.

McNamar's Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if there is a difference in overnight stay (yes/no) for patients having surgery with anesthesia or not (yes/no). You collected the following trial information.

		Anest	thesia
		yes	no
No Anesthesia	yes	0.30	0.10
	no	0.08	0.52

1. You are interested in determining if there is a difference in snacking (yes/no) for students in the afternoon whether they had school or not (yes/no). You collected the following trial information.

Student	1	2	3	4	5	6	7	8	9	10
Snack	Yes	No	Yes	Yes	No	Yes	No	Yes	No	Yes
School	No	No	Yes	No						

McNamar's Test: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if there is a difference in overnight stay (yes/no) for patients having surgery with anesthesia or not (yes/no). You collected the following trial information.

		Anes	<u>thesia</u>
		yes	no
No Anesthesia	yes	0.30	0.10
	no	0.08	0.52

- Odds ratio is 0.08/0.10=0.80; proportion of discordant pairs is 0.08+0.10=0.18
- For a two-tailed test, total sample size is 3562
- 2. You are interested in determining if there is a difference in snacking (yes/no) for students in the afternoon whether they had school or not (yes/no). You collected the following trial information.

Student	1	2	3	4	5	6	7	8	9	10
Snack	Yes	No	Yes	Yes	No	Yes	No	Yes	No	Yes
School	No	No	Yes	No						

	<u>Sch</u>	ool
	yes	no
No School yes	4/10	3/10
no	2/10	1/10

- Odds ratio is 0.2/0.3=0.667; proportion of discordant pairs is 0.2+0.3=0.5
- For a two-tailed test, total sample size is 398

Goodness-of-Fit Test: Overview

Description: Extension of Chi-squared tests, which asks if table of observed values are any different from a table of expected ones. Also generically called Chi-Squared.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
0	≥1	≥2	1	N/A	No

Example:

- Does the observed proportions of phenotypes from a genetics experiment different from the expected 9:3:3:1?
- ∘ $H_0=0$, $H_1\neq 0$

<u>GPower</u>:

- Select X^2 from Test family
- Select Goodness-of-fit tests: Contingency tables from Statistical test
- Select **A priori** from Type of power analysis

• Background Info:

- a) Enter 0.05 in α err prob box or a specific α you want for your study
- b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
- c) Enter X in **DF** (degrees of freedom), which = number of categories -1
- d) Hit Determine =>
- e) Add the number of cells that equals the number of proportions
- f) Enter the expected proportions in the p(H0) column
- g) Enter in the observed proportions in the p(H1) column
 - If you have counts rather than proportions, you can enter them in and then click on **Normalize p(H0)** and **Normalize p(H1)**
- h) Hit Calculate and transfer to main window
- i) Hit Calculate on the main window
- j) Find **Total sample size** in the Output Parameters
- Naïve:
 - a) Run steps a-c above
 - b) Estimate an **effect size w**
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Goodness-of-Fit Test: Example

Does the observed proportions of phenotypes from a genetics experiment different from the expected 9:3:3:1?

- $H_0=0$, $H_1\neq 0$
- The observed ratios we'd like to test are 9:3:4:0
- DF=4-1=3
- Notice the change between the counts and the normalized proportions

Results:

• A total number of 131 samples are needed.

🙀 G*Power 3.1.9.4	-	□ X					
File Edit View Tests Calculator Help							
Central and noncentral distributions Protocol of portain protocol	ower analyses			Dropdov	vn menu iter	ns you specified	
χ² tests - Goodness-of-fit tests: Contingency tabl Analysis: A priori: Compute required sample size				Values yo	ou entered		
α err prob = Power (1-β err prob) =	0.05 0.80			Value(s)	GPower cale	culated	
Critical χ^2 =	10.9166641 7.8147279	Clear		Sample s	ize calculatio	n	
	131 0.8005650	Save					
		Print	Cell	Number of cell p(H0)	s 4 🛉	Numbe	r of cells 4 🛓
Test family Statistical test			1	0.5625	0.5625	Cell p(H0)	p(H1)
χ^2 tests \vee Goodness-of-fit tests: Conting	ency tables	~	2	0.1875	0.1875	1 9	9
Type of power analysis			3	0.1875	0.25	2 3	3
A priori: Compute required sample size – given α, p	ower, and effect size	~	4	0.0625	0	3 3	4
						4	0
Input Parameters Determine => Effect size w 0.2886751	Output Parameters Noncentrality parameter λ	10.9166641					
α err prob 0.05	Critical X ²	7.8147279					
Power (1-β err prob) 0.80	Total sample size	131					
Df 3	Actual power	0.8005650		0.25	0.25	0.25	0.35
	Actual power	0.0005050	Equal p(H(0) Fa	ual p(H1)		0.25
			Normalize p		nalize p(H1)	Equal p(H0)	Equal p(H1)
						Normalize p(H0)	Normalize p(H1)
			Auto calc las	t cell Auto	calc last cell	Auto calc last cell	Auto calc last cell
			Calculate	Effect size w	0.2886751	Calculate Effect	size w ?
			Calculate a	nd transfer to ma	in window	Calculate and transf	er to main window
					Close		Close
	X-Y plot for a range of values	Calculate				Contraction of the Acatematic	

Goodness-of-Fit Test: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the ethnic ratios in a company differ by gender. You collect the following trial data.

Gender	White	Black	Am. Indian	Asian
Male	0.60	0.25	0.01	0.14
Female	0.65	0.21	0.11	0.03

2. You are **interested** in determining if the proportions of student by year (Freshman, Sophomore, Junior, Senior) is any different from 1:1:1:1. You collect the following trial data.

ľ	Student	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Grade	Frs	Soph	Soph	Soph	Soph	Soph	Jun	Jun	Jun	Jun	Jun	Sen	Sen	Sen						

Goodness-of-Fit Test: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the ethnic ratios in a company differ by gender. You collect the following trial data.

Gender	White	Black	Am. Indian	Asian
Male	0.60	0.25	0.01	0.14
Female	0.65	0.21	0.11	0.03

• Got an effect size of 1.04 and degrees of freedom (4-1) of 3; total sample size is 10

2. You are **interested** in determining if the proportions of student by year (Freshman, Sophomore, Junior, Senior) is any different from 1:1:1:1. You collect the following trial data.

Student	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Grade	Frs	Soph	Soph	Soph	Soph	Soph	Jun	Jun	Jun	Jun	Jun	Sen	Sen	Sen						

• **Proportions were: Freshman=7/20=0.35, Sophomore=5/20=0.25, Junior=5/20=0.25, Senior=3/20=0.15**

• Got an effect size of 0.28 and degrees of freedom (4-1) of 3; total sample size is 137

Simple Linear Regression: Overview

Description: this test determines if there is a significant relationship between two normally distributed numerical variables. The predictor variable is used to try to predict the response variable.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
2	0	N/A	N/A	Yes	N/A

Example:

- Can height predict weight in college males?
- H₀=0, H₁≠0

<u>GPower</u>:

- Select **F tests** from Test family
- Select Linear multiple regression: Fixed model, R2 deviation from zero from Statistical test- simple linear regression is just the limit case of multiple regression where there is only 1 predictor variable
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Enter 0.05 in α err prob box or a specific α you want for your study
 - b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
 - c) Enter 1 in Number of predictors
 - d) Hit Determine =>
 - e) Selected the **From correlation coefficient** option and add **squared multiple correlation**
 - Add the correlation coefficient from background information after squaring it
 - f) Hit Calculate and transfer to main window
 - g) Hit Calculate on the main window
 - h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run steps a-c above
 - b) Estimate an **effect size f**²
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters

Simple Linear Regression: Example

Is there a relationship between height and weight in college males?

- H₀=0, H₁≠0
- No background, but expect the correlation to be strong between the two, so go with large effect size

Results:

• A total number of 25 samples are needed.

α err prob 0.05 Critical F 4.279344 Power (1-β err prob) 0.80 Numerator df Number of predictors 1 Denominator df 2 Total sample size 2		r 3.1.9.4				
[8] Thursday, January 16, 2020 14:26:20 F tests - Linear multiple regression: Fixed model, R ² deviation from zero Analysis: A priori: Compute required sample size Input: Effect size f ² = 0.35 α err prob = 0.05 Power (1-β err prob) = 0.80 Number of predictors = 1 Output: Noncentrality parameter λ = 8.7500000 Critical F = 4.2793443 Numerator df = 1 Denominator df = 23 Total sample size = 25 Actual power = 0.8085699 V Print Test family Statistical test F tests Linear multiple regression: Fixed model, R ² deviation from zero Type of power analysis A priori: Compute required sample size - given α , power, and effect size Input Parameters Output Parameters Determine => Effect size f ² 0.35 α err prob 0.05 Power (1-β err prob) 0.80 Numerator df	le Edit	View Tests Calculator	Help			
F tests - Linear multiple regression: Fixed model, R ² deviation from zero Analysis: A priori: Compute required sample size Input: Effect size f ² = 0.35 α err prob = 0.05 Power (1- β err prob) = 0.80 Number of predictors = 1 Output: Noncentrality parameter λ = 8.7500000 Critical F = 4.2793443 Numerator df = 1 Denominator df = 23 Total sample size = 25 Actual power = 0.8085699 V Print Test family Statistical test F tests V Linear multiple regression: Fixed model, R ² deviation from zero Type of power analysis A priori: Compute required sample size - given α , power, and effect size Input Parameters Determine = > Effect size f ² 0.35 α err prob 0.05 Power (1- β err prob) 0.80 Number of predictors 1 Denominator df 2 Total sample size - given α power, and effect size	Central a	nd noncentral distribution	s Protocol of po	ower analyses		
F tests Linear multiple regression: Fixed model, R ² deviation from zero Type of power analysis A priori: Compute required sample size – given α , power, and effect size nput Parameters Determine => Effect size f ² 0.35 α err prob 0.05 Power (1- β err prob) Number of predictors 1 Denominator df 2 Total sample size	F tests Analysis Input:	 Linear multiple regressions: A priori: Compute re Effect size f² α err prob Power (1 – β err prob) Number of predictor Noncentrality param Critical F Numerator df Denominator df Total sample size 	on: Fixed model, quired sample si: = = = s = eter λ = = = = = = = =	ze 0.35 0.05 0.80 1 8.7500000 4.2793443 1 23 25	Í	Clear Save
F tests Linear multiple regression: Fixed model, R ² deviation from zero Type of power analysis A priori: Compute required sample size – given α , power, and effect size Input Parameters Output Parameters Determine => Effect size f ² 0.35 α err prob 0.05 Power (1- β err prob) 0.80 Number of predictors 1 Denominator df 2 Total sample size 2	Tastfami	by Chatical test				/
Type of power analysis A priori: Compute required sample size – given α , power, and effect size Input Parameters Determine => Effect size f ² 0.35 α err prob 0.05 Power (1- β err prob) 0.80 Number of predictors 1 Denominator df 2 Total sample size 2			e regression: Fixe	d model R ² deviation from	zero	~
A priori: Compute required sample size – given α , power, and effect size Input Parameters Determine => Effect size f ² 0.35 α err prob 0.05 Power (1- β err prob) 0.80 Number of predictors 1 Denominator df 2 Total sample size 2			e regression. rixe	a model, R ⁻ deviation from	12010	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Determine => Effect size f^2 0.35 Noncentrality parameter λ 8.750000 α err prob 0.05 Critical F 4.279344 Power (1- β err prob) 0.80 Numerator df 2 Number of predictors 1 Denominator df 2 Total sample size 2	A priori:	Compute required sample	e size – given α, p	ower, and effect size		~
Determine => Effect size f^2 0.35 Noncentrality parameter λ 8.750000 α err prob 0.05 Critical F 4.279344 Power (1- β err prob) 0.80 Numerator df 2 Number of predictors 1 Denominator df 2 Total sample size 2	Input Par	meters		Output Parameters		
Power (1-β err prob) 0.80 Number of predictors 1 Denominator df 2 Total sample size 2			0.35		eter λ	8.7500000
Number of predictors 1 Denominator df 2 Total sample size 2		α err prob	0.05	Crit	tical F	4.2793443
Total sample size 2		Power (1-β err prob)	0.80	Numera	tor df	1
			1	Denomina	tor df	23
Actual power 0.808569				Total sample	e size	25
				Actual p	ower	0.8085699
X-Y plot for a range of values Calculate						

Dropdown menu items you specified

given α, pc

0.05

0.80

0.5625000

Values you entered

Value(s) GPower calculated

Effect size f²

α err prob

Sample size calculation

Effect size conventions

Power (1-ß err prob)

Number of predictors

= .02 - small

= .15 - medium

= .35 - large

mine =>

Simple Linear Regression: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if height (meters) in plants can predict yield (grams of berries). You collect the following trial data.

Yield	46.8	48.7	48.4	53.7	56.7
Height	14.6	19.6	18.6	25.5	20.4

2. You are interested in determining if the size of a city (in square miles) can predict the population of the city (in # of individuals).

Simple Linear Regression: Answers

Calculate the sample size for the following questions:

1. You are interested in determining if height (meters) in plants can predict yield (grams of berries). You collect the following trial data.

Yield	46.8	48.7	48.4	53.7	56.7
Height	14.6	19.6	18.6	25.5	20.4

- Running a regression found a squared multiple correlation coefficient (R-squared)=0.459
- Got an effect size of 0.85; for 1 predictor, found total sample size of 12
- 2. You are interested in determining if the size of a city (in square miles) can predict the population of the city (in # of individuals).
 - Guessed a large effect size (0.35); for 1 predictors, found total sample size of 25

Multiple Linear Regression: Overview

Description: The extension of simple linear regression. The first major change is there are more predictor variables. The second change is that interaction effects can be used. Finally, the results typically can't be plotted.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
>2	0	N/A	N/A	Yes	N/A

Example:

• Can height, age, and time spent at the gym, predict weight in adult males?

• H₀=0, H₁≠0

<u>GPower</u>:

- Select **F tests** from Test family
- Select Linear multiple regression: Fixed model, R2 deviation from zero from Statistical test
- Select A priori from Type of power analysis

• Background Info or Naïve:

- a) Enter 0.05 in α err prob box or a specific α you want for your study
- b) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
- c) Enter the number of predictor variables in **Number of predictors**
- d) Hit Determine =>
- e) Enter correlation coefficient:
 - a) From correlation coefficient: enter squared multiple correlation coefficient
 - b) From predictor correlations: add number of predictors, then click **Specify matrices**, from there add the correlation coefficients from a correlation matrix of the outcome (response) with all the predictor variables, and finally **Accept values**
- f) Hit Calculate and transfer to main window
- g) Hit Calculate on the main window
- h) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run steps a-c above
 - b) Estimate an **effect size f**²
 - c) Hit Calculate on the main window
 - d) Find **Total sample size** in the Output Parameters

Dropdown menu items you specified

Multiple Linear Regression: Example

Values you entered Value(s) GPower calculated Sample size calculation

Can height, age, and time spent at the gym, predict weight in adult males?

- H₀=0, H₁≠0
- From trial data, we obtained the following correlation matrix

	Weight	Height	Age	GymTime
Weight	1	0.317	0.025	0.304
Height	0.317	1	-0.466	0.800
Age	0.025	-0.466	1	-0.485
GymTime	0.304	0.800	-0.485	1

 Only need about highlighted values for the matrix

Results:

• A total number of 50 samples are needed.

G*Power 3.1.9.4	- 🗆 X	Corr between predictors and outcome Corr between predictors
File Edit View Tests Calculator Help	^	Number of predictors: 3 🔺
Central and noncentral distributions Protocol of po	wer analyses	
		predictor P1 P2 P3 corr with outcome Y 0.317 0.025 0.304
 [10] Thursday, January 16, 2020 14:54:53 F tests - Linear multiple regression: Fixed model, 	A Reviation from zero	
Analysis: A priori: Compute required sample si		
-	0.2399717	
	0.05	
Number of predictors =	3	
	11.9985850 Clear	
Numerator df =		
	46 Save	
	50 0.8045899	
	Y Print	
Test family Statistical test		
	ed model, R ² deviation from zero	Calc o ² Coefficient o ² ? Accent values Cancel
Linear multiple regression. Fixe		Calc p ² Coefficient p ² ? Accept values Cancel
Type of power analysis		
A priori: Compute required sample size – given α, p	ower, and effect size \checkmark	
Input Parameters	Output Parameters	From correlation coefficient
Determine => Effect size f ² 0.2399717	Noncentrality parameter λ 11.9985850	Squared multiple correlation p ^z 0.5
α err prob 0.05	Critical F 2.8068449	
Power (1-β err prob) 0.80	Numerator df 3	From predictor correlations
Number of predictors 3	Denominator df 46	Number of predictors 3
	Total sample size 50	
	Actual power 0.8045899	Squared multiple correlation p ² 0.19353
		Specify matrices
		Calculate Effect size f ² 0.2399717
		Calculate and transfer to main window
		Close
		Ciose
	X-Y plot for a range of values Calculate	

Multiple Linear Regression: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if height (meters), weight (grams), and fertilizer added (grams) in plants can predict yield (grams of berries). You collect the following trial data.

Yield	46.8	48.7	48.4	53.7	56.7
Height	14.6	19.6	18.6	25.5	20.4
Weight	95.3	99.5	94.1	110	103
Fertilizer	2.1	3.2	4.3	1.1	4.3

2. You are interested in determining if the size of a city (in square miles), number of houses, number of apartments, and number of jobs can predict the population of the city (in # of individuals).

Multiple Linear Regression: Answers

Calculate the sample size for the following questions:

1. You are interested in determining if height (meters), weight (grams), and fertilizer added (grams) in plants can predict yield (grams of berries). You collect the following trial data.

Yield	46.8	48.7	48.4	53.7	56.7
Height	14.6	19.6	18.6	25.5	20.4
Weight	95.3	99.5	94.1	110	103
Fertilizer	2.1	3.2	4.3	1.1	4.3

• Running a regression found a squared multiple correlation coefficient (R-squared)=0.944

• Got an effect size of 16.85; for 3 predictors, found total sample size of 6

- 2. You are interested in determining if the size of a city (in square miles), number of houses, number of apartments, and number of jobs can predict the population of the city (in # of individuals).
 - Guessed a large effect size (0.35); for 4 predictors, found total sample size of 40

Pearson's Correlation: Overview

Description: this test determines if there is a difference between two correlation values. The categorical variable is a grouping variable that is binomial.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
2	1	N/A	N/A	Yes	No

Example:

- Is the correlation between hours studied and test score for group A statistically different than the correlation between hours studied and test score for group B?
- H₀=0, H₁≠0

<u>GPower</u>:

- Select **z tests** from Test family
- Select Correlations: Two Independent Person r's from Statistical test
- Select A priori from Type of power analysis

• Background Info:

- a) Select **One** or **Two** Tail(s) as appropriate to your question
- b) Enter 0.05 in α err prob box or a specific α you want for your study
- c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
- d) Enter 1.0 in Allocation ratio N2/N1 unless the group sizes are different between the categories
- e) Hit Determine =>
- f) Add the correlation coefficients 1 and 2
- g) Hit Calculate and transfer to main window
- h) Hit Calculate on the main window
- i) Find **Total sample size** in the Output Parameters

• Naïve:

- a) Run steps a-d above
- b) Estimate an **effect size q**
- c) Hit Calculate on the main window
- d) Find **Total sample size** in the Output Parameters

Pearson's Correlation: Example

Is the correlation between hours studied and test score for group A statistically different than the correlation between hours studied and test score for group B?

- H₀=0, H₁≠0
- Don't have data, but expect that the two groups will be quite similar so expect effect size to be small
- Two tails because we only care about difference, not direction

Results:

 A total number of 3146 samples are needed, 1573 for each of the two groups.

Pearson's Correlation: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the correlation between height and weight in men is <u>differen</u>t from the correlation between height and weight in women. You collect the following trial data.

Males	Height	178	166	172	186	182
	Weight	165	139	257	225	196
Females	Height	174	175	157	168	166
	Weight	187	182	149	132	143

2. You are interested in determining if, in lab mice, the correlation between longevity (in months) and average protein intake (grams) is <u>higher</u> from the correlation between longevity and average fat intake (grams).

Pearson's Correlation: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if the correlation between height and weight in men is <u>differen</u>t from the correlation between height and weight in women. You collect the following trial data.

Males	Height	178	166	172	186	182
	Weight	165	139	257	225	196
Females	Height	174	175	157	168	166
	Weight	187	182	149	132	143

• Correlation coefficient for men=0.37; coefficient for women=0.66

- Got effect size of -0.40, and with an allocation ratio of 1.0, total sample size is 198 (99 per group)
- NOTE: same result if effect size is 0.40, sign doesn't matter here
- 2. You are interested in determining if, in lab mice, the correlation between longevity (in months) and average protein intake (grams) is <u>higher</u> from the correlation between longevity and average fat intake (grams).
 - Guess a medium effect (0.3), and with an allocation ratio of 1.0, total sample size is 282 (141 per group)

Non-Parametric Regression (Logistic): Overview

Description:

Non-parametric regression is any regression where the numerical variables are not normally distributed. The two that can be calculate in GPower are Logistic and Poisson.

In **Logistic regression**, the response variable (Y) is binary (0/1). It tests whether a continuous predictor is a significant predictor of a binary outcome, with or without other covariates. (Can also run with a dichotomous predictor but will only show continuous here).

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
≥2	0	N/A	N/A	No	N/A

Example:

- Does body mass index (BMI) influences mortality (yes 1, no 0)?
- H₀=0, H₁≠0

<u>GPower</u>:

- Select **z tests** from Test family
- Select Logistic Regression from Statistical test
- Select A priori from Type of power analysis
- Select **Options** button and set the **Input effect size as** .. **Two probabilities**
- Background Info or Naïve:
 - a) Select **One** or **Two** Tail(s) as appropriate to your question
 - b) Enter 0.05 in α err prob box or a specific α you want for your study
 - c) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - d) Enter value in **Pr(Y=1|Y=1) H0** box-(explained in next slide)
 - e) Enter value in **Pr(Y=1|Y=1) H1** box-(explained in next slide)
 - f) Enter value in \mathbf{R}^2 other X box-(explained in next slide)
 - g) Select **X distribution** will have to examine or predict distribution of predictor (X) variable-(explained in next slide)
 - h) Enter parameters in the **X parameter box**(es) will depend on the distribution
 - i) Hit Calculate on the main window
 - j) Find **Total sample size** in the Output Parameters

Logistic Regression: parameters and how to calculate them

- **Pr(Y=1|X=1) H0 –** probability of Y variable (response) =1, when main predictor is one standard deviation above its mean
 - ° Based on background information, or make informed guess
- **Pr(Y=1|X=1) H1** probability of Y variable (response) =1, when main predictor is at its mean
 - ° Based on background information, or make informed guess
- R² other X Expected R-squared between main predictor variable and over covariates; amount of variability
 in main predictor that is accounted for by covariates
 - $\circ\,$ If there are no covariates (as in the simplest case of a single predictor), enter 0
 - Otherwise, calculate with background data by regressing main predictor onto data for all other covariates
 - Rule of thumb for naïve estimation: low association=0.04, moderate association=0.25, strong association=0.81
- X distribution will have to examine or predict distribution of predictor (X) variable
 - Select normal unless you think the main predictor is distributed differently
- \circ X parameter box(es) will depend on the distribution
 - $\circ\,$ For normal, the μ (mu) is the z-score population mean of main predictor, while sigma (\sigma) is that predictor's z-score population Standard Deviation

Non-Parametric Regression (Logistic): Example

Does body mass index (BMI) influences mortality (yes 1, no 0)?

- $H_0=0$, $H_1\neq 0$
- Based on background data, expect Pr(Y=1 | X=1) H0 to be low at 0.15 and Pr(Y=1 | X=1) H1 to be higher, at 0.25
- Since BMI is only predictor, the R² other X is 0
- Expect BMI to be normally distributed (mean=0, SD=1)
- Two tails because we only care about difference, not direction
- Make sure to Choose Options

Results:

• A total number of 158 samples are needed.

	ffect size as		
00	ds ratio		
● T	o probabilities		
Comp	utation		
OU	e enumeration procedure (Lyles et al., 20	007) if N <	100
	Test statistic		<u></u>
	Wald		
	O Likelihood ratio		
۱) ا	e large sample approximation		
	Test procedure		
	Demidenko (2007) - recommende	ed	
	With variance correction		
	🔿 Hsieh et al. (1998) – for binary and	d N(0,1) X-Di	stribution
		Cancel	ОК

Non-Parametric Regression (Poisson): Overview

Description:

In **Poisson regression**, the response variable (Y) is a rate. It tests whether a continuous predictor variable influences the rate of events over a set period, with or without covariates (can also do dichotomous predictor but will only show continuous here).

Note that Poisson regression assumes independence of observations which is that the occurrence or absence of a previous event should not influence whether another event will occur. Subjects can have multiple events, as long as they are independent.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
≥2	0	N/A	N/A	No	N/A

Example:

- Does a change in drug dose decrease the rate of adverse affects?
- H₀=0, H₁≠0

<u>GPower</u>:

- Select **z tests** from Test family
- Select Poisson Regression from Statistical test
- Select A priori from Type of power analysis
- Background Info or Naïve:
 - a) Select **One** or **Two** Tail(s) as appropriate to your question
 - b) Enter value in **Exp(β1)** box (explained in next slide)
 - c) Enter 0.05 in **a err prob** box or a specific **a** you want for your study
 - d) Enter 0.80 in **Power (1-β err prob**) box or a specific power you want for your study
 - e) Enter value in **Base rate exp(\beta)** box-(explained in next slide)
 - f) Enter value in Mean exposure box -(explained in next slide)
 - g) Enter value in \mathbf{R}^2 other X box-same as logistic; enter 0 if no covariates
 - h) Select **X distribution** will have to examine or predict distribution of predictor (X) variable
 - i) Enter parameters in the **X parameter box**(es) will depend on the distribution
 - j) Hit Calculate on the main window
 - k) Find **Total sample size** in the Output Parameters

Poisson Only:

Poisson Regression: parameters and how to calculate them

• $Exp(\beta 1)$ –change in response rate with a 1-unit increase in the predictor variable

- If we expect response rate to go **UP** by 25% per 1-unit predictor increase, the $Exp(\beta 1)$ would be 1.25
- If we expect response rate to go **DOWN** by 30% per 1-unit predictor increase, the $Exp(\beta 1)$ would be 0.70
- **Base rate exp(\beta)** –The response rate we expect if there is no intervention
 - Need to know your unit of exposure, what rate is being counted-could be time, distance, sample size, volume, etc.
 - For that unit of exposure, the base rate is the number of events expected per length of exposure
 - Ex.: 13 events/30 days = base rate of 0.43; 1 event/20 miles = base rate of 0.05; 5 events/10 volunteers = base rate of 0.5
- Mean exposure length of exposure (how long you want the study to last in terms of your unit of exposure)
- **R² other X** Expected R-squared between main predictor variable and over covariates; amount of variability in main predictor that is accounted for by covariates
 - If there are no covariates (as in the simplest case of a single predictor), enter 0
 - Otherwise, calculate with background data by regressing main predictor onto data for all other covariates
 - Rule of thumb for naïve estimation: low association=0.04, moderate association=0.25, strong association=0.81
- X distribution will have to examine or predict distribution of predictor (X) variable
 - Select normal unless you think the main predictor is distributed differently
- **X parameter box**(es) will depend on the distribution
 - \circ For normal, the μ (mu) is the z-score population mean of main predictor, while sigma (σ) is that predictor's z-score population Standard Deviation

Non-Parametric Regression (Poisson): Example

Does a change in drug dose decrease the rate of adverse affects?

- $H_0=0$, $H_1≠0$
- No background information
- Expect a moderate decrease in rate with increase in drug dose, so will set Exp(β1) to 0.80
- Our unit of exposure will be days and evens will be adverse effects, so let's set the Base rate exp(β0) to be:
 - 1 adverse effect/1 day = 1
- We want to try this for a month, so let's have Mean exposure be 30 days
- $^\circ~$ Since Drug dose is only predictor, the R^2 other X is 0
- Not sure what rate of adverse effects' distribution is, so to be safe, went with uniform
- One tail, because we are specifically interested in a decrease in rate

Results:

• A total number of 98 samples are needed.

Dropdown menu items you specified

Values you entered

Value(s) GPower calculated

Sample size calculation

Non-Parametric Regression: Practice

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if body temperature influences sleep disorder prevalence (yes 1, no 0). You collect the following trial data.

Temperature	98.6	98.5	99.0	97.5	98.8	98.2	98.5	98.4	98.1
Sleep Disorder?	No	No	Yes	No	Yes	No	No	Yes	No

2. You are interested in determining if the rate of lung cancer incidence changes with a drug treatment.

Non-Parametric Regression: Answers

Calculate the sample size for the following scenarios (with $\alpha = 0.05$, and power=0.80):

1. You are interested in determining if body temperature influences sleep disorder prevalence (yes 1, no 0). You collect the following trial data. Temperature 98.6 98.5 99.0 97.5 98.8 98.2 98.5 98.4 98.1

ila.	Temperature	98.6	98.5	99.0	97.5	98.8	98.2	98.5	98.4	98.1
	Sleep Disorder?	No	No	Yes	No	Yes	No	No	Yes	No

- Want logistic regression with two-tails; temperature mean is 98.4 with SD=0.436 -> (97.964 --98.836)
- Pr(Y=1|X=1) H0 = 0.33 (as only one had sleep disorder at ranges outside one SD); Pr(Y=1|X=1) H1= 0.67
- No other Xs, so R-squared is 0
- Temperature is normally distributed, but set the mean to 0 and SD=1 (want it standardized rather than actual)
- Got a total sample size of 195
- 2. You are interested in determining if the rate of lung cancer incidence changes with an environmental factor over a 3 years.
 - Want poisson regression with two-tails
 - Expect an Exp(β1) of 1.02 (up by 2% per every unit increase)
 - Researching rate of lung cancer in men per year found rate of 57.8 (per 100,000)
 - Mean exposure is 3, as we want to try this for 3 years; No other Xs, so R-squared is 0
 - Try normal distribution of X with 0,1
 - Got a total sample size of 116

ANCOVA: Overview

Description: Blend of ANOVA and regression.

Tests whether the means of a dependent variable (DV) are equal across levels of a categorical independent variable (IV) often called a treatment, while statistically controlling for the effects of other continuous variables that are not of primary interest, known as covariates.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
>1	≥1	>1	≥1	Yes	N/A

Example:

- Is there a difference in recovery time across two conditions and three diagnostic groups with baseline-scores as the co-variate?
- ∘ $H_0=0$, $H_1\neq 0$

<u>GPower</u>:

- Select **F tests** from Test family
- Select ANCOVA: Fixed effects, main effects and interactions from Statistical test
- Select A priori from Type of power analysis

• Background Info:

- a) Enter 0.05 in α err prob box or a specific α you want for your study
- b) Enter 0.80 in **Power (1-\beta err prob**) box or a specific power you want for your study
- c) Fill out boxes for **Numerator df** and **Number of groups-**same as Multi-way ANOVA
- d) Fill out box for **Number of covariates**-depends on number you are including in design
- e) Hit Determine =>
- f) Select Direct
- g) Add **partial eta-squared**-same as ANOVA
- h) Hit Calculate and transfer to main window
- i) Hit Calculate on the main window
- j) Find Total sample size in the Output Parameters
- Naïve:
 - a) Run steps a-c above
 - b) Estimate an **effect size f**
 - c) Hit Calculate on the main window
 - d) Find Total sample size in the Output Parameters

ANCOVA: Example

Is there a difference in recovery time across two conditions and three diagnostic groups with baseline-scores as the co-variate?

- $H_0=0$, $H_1\neq 0$
- No background information
- Expect a **medium effect**
- Numerator df = (2-1)*(3-2)=2
- Number of groups=2*3=6
- Only one covariate

Results:

• A total of 158 samples are needed.

Central and	noncentral distributions	Protocol of po	wer analyses	
	fay, January 17, 2020 C ANCOVA: Fixed effects, m A priori: Compute req Effect size f α err prob Power (1-β err prob) Numerator df Number of groups Number of covariates	nain effects and in uired sample siz = = = = = =	e 0.25 0.05 0.80 2 6	Clear
Output:	Noncentrality paramet Critical F Denominator df Total sample size Actual power	terλ = = = =	9.8750000 3.0559594 151 158 0.8019839	Save Print
Test family	Statistical test			
F tests		encers, manifer	ects and interactions	
Type of nov	ver analysis			
	wer analysis ompute required sample :	size – given α, po	wer, and effect size	~
A priori: Co	ompute required sample	size – given α, po		~
A priori: Co	ompute required sample : neters	size – given α, po 0.25	wer, and effect size Output Parameters Noncentrality parameter λ	9.8750000
A priori: Co Input Paran	ompute required sample : neters		Output Parameters	9.8750000 3.0559594
A priori: Co Input Paran	neters => Effect size f	0.25	Output Parameters Noncentrality parameter λ	
A priori: Co Input Paran	empute required samples neters => Effect size f α err prob	0.25	Output Parameters Noncentrality parameter λ Critical F	3.0559594
A priori: Co Input Paran	empute required sample neters => Effect size f α err prob Power (1-β err prob)	0.25 0.05 0.80	Output Parameters Noncentrality parameter A Critical F Denominator df	3.0559594
A priori: Co Input Paran	empute required sample s neters => Effect size f α err prob Power (1-β err prob) Numerator df	0.25 0.05 0.80 2	Output Parameters Noncentrality parameter λ Critical F Denominator df Total sample size	3.0559594 151 158
A priori: Co Input Paran	empute required samples neters => Effect size f α err prob Power (1-β err prob) Numerator df Number of groups	0.25 0.05 0.80 2 6	Output Parameters Noncentrality parameter λ Critical F Denominator df Total sample size	3.0559594 151 158

ANCOVA: Practice

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):

- 1. You are interested in determining if there is a difference in weight loss due to treatment (Drug X, Y, and Z), while controlling for body weight. You collect the following trial data for treatment (shown on right).
- 2. You are interested in determining if there is a difference in weight loss due to a diet style (1, 2, 3, or 4), while controlling for starting body weight and body height.

Dru	Drug X		ıg Y	Drug Z		
Starting weight	Weight lost	Starting weight	Weight lost	Starting weight	Weight lost	
120	1.9	120	5.7	239	1.1	
144	6.6	236	9	332	4.6	
270	5.9	204	4.4	268	12.6	
169	9.6	127	7.5	207	12.5	
189	3.9	134	3.7	183	18.5	

ANCOVA: Answers

Calculate the sample size for the following scenarios (with α =0.05, and power=0.80):

- 1. You are interested in determining if there is a difference in weight loss due to treatment (Drug X, Y, and Z), while controlling for body weight. You collect the following trial data for treatment (shown on right).
 - Numerator df =3-1=2
 - **3** groups (3 treatments) and 1 covariate (weight)
 - Ran general linear model in SPSS with data to get $\eta 2 = SS_{eff} / (SS_{eff} + SS_{err})$
 - $\circ \quad \eta 2 = 64 / (64 + 235.3) = 0.213$
 - Got effect size of 0.52 for a total sample size of 39
- 2. You are interested in determining if there is a difference in weight loss due to a diet style (1, 2, 3, or 4), while controlling for starting body weight and body height.
 - Numerator df =4-1=3
 - 4 groups (4 diet styles) and 2 covariates (weight, and height)
 - Guessed medium effect size (0.25) for a total sample size of 179

Dru	Drug X		ıg Y	Drug Z		
Starting weight	Weight lost	Starting weight	Weight lost	Starting weight	Weight lost	
120	1.9	120	5.7	239	1.1	
144	6.6	236	9	332	4.6	
270	5.9	204	4.4	268	12.6	
169	9.6	127	7.5	207	12.5	
189	3.9	134	3.7	183	18.5	

Generalized Linear Mixed Models, a postlude

Description: The most expansive model for statistical analysis. Can used fixed effects, random effects, categorical predictor variables, numerical predictor variables, and a variety of distributions (Not just normal). Often abbreviated as GLMMs.

Numeric. Var(s)	Cat. Var(s)	Cat. Var Group #	Cat Var. # of Interest	Parametric	Paired
≥1	≥0	≥0	≥0	Y/N	N/A

Example:

 Can height, weight, rate of driving speed, gender, age, ethnicity, and number of weekly drinks predict the probability of car crashes?

• H₀=0, H₁≠0

- Output of the scope of GPower
- Stay tuned for approaches in other software programs such as R, SAS, and Excel

Common Clinical Study Designs

Name	Description	Typical Statistical Method
Randomized Control Trial	A controlled clinical trial that randomly (by chance) assigns participants to two or more groups. There are various methods to randomize study participants to their groups	ANOVA
Double Blind Method	A type of randomized controlled clinical trial/study in which neither medical staff/physician nor the patient knows which of several possible treatments/therapies the patient is receiving.	ANOVA
Cohort Study	A clinical research study in which people who presently have a certain condition or receive a particular treatment are followed over time and compared with another group of people who are not affected by the condition.	Regression
Case Control	Case-control studies begin with the outcomes and do not follow people over time. Researchers choose people with a particular result (the cases) and interview the groups or check their records to ascertain what different experiences they had. They compare the odds of having an experience with the outcome to the odds of having an experience without the outcome.	Regression
Cross-sectional Study	The observation of a defined population at a single point in time or time interval. Exposure and outcome are determined simultaneously	Regression

Acknowledgements

- The DaCCoTA is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729.
- For the labs that use the Biostatistics, Epidemiology, and Research Design Core in any way, including this Module, please acknowledge us for publications. "Research reported in this publication was supported by DaCCoTA (the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM128729).

Daccota Dakota cancer collaborative ON TRANSLATIONAL ACTIVITY